
TRS•BO

EDITOR/
ASSEMBLER

Catalog Number 26-2002

User Instruction Manual

CUSTOM MANUFACTURED IN u S.A . BY RA DIO SHACKM A DIV ISION OF TA~DY CORPORA:ION

TRS-80 EDITOR/ ASSEMBLER

OPERATION
AND

REFERENCE MANUAL

@Copyright 1978, by Radio Shack, A Division of Tandy Corporation, Ft. Worth, Texas 76102

ADDENDUM

EDITOR/ ASSEMBLER
CATALOG NUMBER 26-2002

Page 4, left column, fifth line should read

"where string is a sequence of 16 characters or less"

Page 4, right column, 14th line should read

"Note: Source lines may be up to 1 28 characters long. This"

Page 5, left column, line 18 should read

"The R command only replaces one line and goes into"

Page 11, left column, description of END statement at bottom of page is incomplete. Add the following:

""The END statement can specify a start address i.e. END LABEL, END 6000H. This address is used by the system program
if no start address is given with the slash (/)."

Page 47, right column, line 17 should read:

"C: Set if borrow; reset otherwise"

ADDENDUM

EDITOR/ ASSEMBLER
CATALOG NUMBER 26-2002

Page 48, right column, line 18 should read:

"C: Set if borrow; reset otherwise"

Page 52, right column, line 18 should read:

"C: Set if borrow; reset otherwise"

Page 64, left column, line 26 should read:

"C: Set if borrow; reset otherwise"

Page 128, fifth column, line 9 should read:

"Z,AGN"

TABLE OF CONTENTS

Page

Introduction. 1

Notation Conventions .. 1

Editor/ Assembler ... 1

Loading. 2

Commands ... 2

Assemble (A) .. 2

Basic(B) ... 3

Delete(D) .. 3

Edit (E) .. 3

Find (F) ... 4

Hardcopy (H)4

Insert (I) .. .4

Load (L) ... 4

Number (N) ... 4

Print(P) ... 5

Replace (R) . 5

Type (T) . .. 5

Scroll and Tab ... 5

Write (W) . .. 5A

Cassette Tapes .. 6

Sample Use 6

Assembly Language .. 8

Syntax 8

Expressions q

Status Flags .. 9

Pseudo-ops. l l

Assembler Commands 11

Z80 Instruction Set ... l l

Index to Instructions 11-12

8 Bit Load Group l3

16 Bit Load Group ... 24

Exchange, Block Transfer and Search Group 34

8 Bit Arithmetic and Logical Group 43

General Purpose Arithmetic and CPU Control Group 36

16 Bit A1ithmetic Group. 63

Rotate and Shift Group 69

Bit Set, Reset and Test Group 8 l

Jump Group 86

Call and Return Group 92

Input and Output Group98

i.i

Z-80 Hardware Configuration ... 108

Z-80 CPU Architecture ... l 08

CPU Registers ... 108

Special Purpose Registers .. 108

Accumulator and Flag Registers l 09

General Purpose Registers ... l 09

Arithmetic & Logic Unit (ALU) ... 109

Instruction Register and CPU Control 109

Z-80 CPU Pin Description ... 109

Z-80 CPU instruction Set ... 110

Introduction to Instruction Types ... 111

Addressing Modes . 111

l.mmediate .. 111

Immediate Extended ... 111

Modified Page Zero Addressing 112

Relative Addressing .. 112

Extended Addressing ... 112

Indexed Addressing .. 112

Register Addressing .. 112

Implied Addressing .. 112

Register Indirect Addressing .. 112

Bit Addressing ... 113

Addressing Mode Combinations ... 113

CPU Timing .. 113

Appendices

Numeric List of Instruction Set .. 114

Alphanumeric List of Instruction Set ... 120

Error Messages ... 125

Memory Map ... 130-131

Editor/ Assembler Command List ... 132

iii

Introduction
The TRS-80 Editor/Assembler is a RAM-resident text editor
and assembler for the TRS-80 microcomputer system. The
Editor/ Assembler was designed to provide the ease of use
required by the novice, while providing capabilities powerful
enough for the expert. LEVEL II BASIC is capable of
directly loading the Editor/Assembler cassette tape. LEVEL
I BASIC must read-in the Editor/Assembler using the
SYSTEM tape (included).

The text editing features of the Editor/Assembler facilitate
the manipulation of alphanumeric text files. The most
common use of the editing capability is in the creation and
maintenance of assembly language source programs.

The assembler portion of the Editor/ Assembler facilitates the
translation of symbolic language source programs into
machine executable code. This object code may then be
executed with the SYSTEM tape for LEVEL I BASIC or
directly with the SYSTEM command under LEVEL II
BASIC. Previous knowledge of machine language and the
hexidecimal nwnber system is assumed throughout this
manual.

The Assemble command (A) supports the assembler language
specifications set forth in the Zilog Z80-Assembly Language
Program Manual, 3.(/J D.S., REL.2.1, FEB 1977, with the
following exceptions.

Macros are not supported.

Operand expressions may only contain the + and - , &
(logical AND), and ((shift) operators, and are evaluated on a
strictly left to right basis. Parentheses are not allowed!

Conditional assembly commands, where a programmer may
control which portions of the source code are assembled,
are not supported.

Constants may only be decimal (D), hexidecimal (H), or
octal (0). See section under operands.

The only Assembler commands supported are *LIST OFF
and *UST ON.

A label can contain only alphanumeric characters. (Use of
the - and? is not supported.) A label can be up to 6 charac­
ters long. The first character must be alphabetic. The other
characters must be alphanumeric.

NOTATION CONVENTIONS

[] Square brackets endose optional infor­
mation:

P[linel I :line2l l

The :line2 is optional, and the P need not
be followed by anything at all since all
options following Pare enclosed in brack­
ets. The brackets are never actually typed.

CAPITALS

lowercase

underscore

line

line 1 :line2

•

*

inc

filename

Editor/ Assembler

The ellipses represent repetition of a
previous item:

A[[~ filename] f/switchf/switchl ...] l

The /switch may be repeated several times.

Capital letters must be as shown for input,
and will be as shown in examples of output.

The user must substitute in his own values
(eg: inc. filename, line)

Underscored information is output printed
by the Editor/ Assembler unless specified
otherwise. This distinguishes user inpu1
from computer output but is never actually
typed by the user.

A lowercase B with slash specifies a manda­
tory blank(space).

Any decimal number from (/J to 65 529

Numbers specify two different line num­
bers (line # 1 is usually less than line # 2)

A period may be used in place of any line
number. It represents a pointer to the
current line of source code being assem­
bled, printed, or edited. ·

A pound sign may be used in place of any
line number. H represents the first (lowest
line number) source code line in the text
buffer.

An asterisk may be used in place of any
line number. It represents the last (highest
line number) source code line in the text
buffer.

A number representing an increrneni
between successive line numbers.

A character string specifying the name of a
cassette file. See section on Cassette Tapes.

In brief the Editor/ Assem bier is designed for a user to type in
source assembler code. Th.is source code is assembled and the
resulting object code may be recorded onto tape. The Editor/
Assembler may also read-in, re-:ord, and edit other source
cixle fries stored on tape. Of course, the source fik's m:rnipu­
Iated by the Editor/ Assembler need uot he assembly programs
only. The files may be any text information created by the
Editor/ Assembler. BASIC program tapes may NOT be
edited by the Editor/ Assembler.

The limit to the size of an assembly language program is the
amount of RAM memory in the user's computer system. The
Edi to(/ Assembler maintains a "text buffer." This buffer
starts at the end of the Editor/ Assembler program and con­
tinues to the end of memory. This usually leaves around 7K
of memory for the text buffer which will contain the source
file.

LOADING

LEVEL II BASIC

Since the Editor/ Assembler is a machine language program,
it may only be loaded using the SYSTEM command. Place
the Editor/ Assembler tape into the cassette recorder and
depress PLAY. The volume should be set to 5 or 6 (this is a
5(/)</) baud tape).

Type SYSTEM and then press ENTER. The computer will
respond by typing:

*?

Now type EDTASM, the filename of the Editor/Assembler,
and the tape will be read into memory. Once loading is
completed, type a/ (slash) and press ENTER, the monitor
screen is clear and the message:

TRS-80 EDITOR/ASSEMBLER 1.1

*

is printed. The asterisk is the Editor/Assembler prompt
symbol. This is its way of requesting a command. Depressing
the BREAK key will always return you to an asterisk except
when reading a tape, writing a tape, or editing a line. The
BREAK key may be used to abort an assembly or a print­
out in progress.

LEVEL I BASIC

Since the Editor/ Assembler is recorded on tape at 5(/)</)
baud, LEVEL I BASIC CAN NOT DIRECTLY read-in the
tape. You must first load the SYSTEM tape provided. This
program can then read-in the 5(/)</) baud Editor/ Assembler
tape.

Load the SYSTEM tape into the cassette recorder. Set
volume to 8 or 9 (this is a 25</J baud tape). Type CLOAD
and BASIC I will read-in the SYSTEM tape. The program
will start as soon as loading is finished.

The computer will type:

*

Now load your cassette with the Editor/Assembler tape. Set
volume to 5-6 (this is a 5(/)</) baud tape). Type EDTASM and
press ENTER. The Editor/Assembler will be read-in. When
the reading is complete, another~ will be typed. Now type
a slash(/) and then the number 18(/)58. Press ENTER to
execute the Editor/Assembler. The number 18(/)58 is the
entry address of the Editor/ Assembler.
TRS-80 EDITOR/ASSEMBLER 1.0

*
2

You may now use the Editor/Assembler as described under
the section on Assembly Language.

The BREAK key works the same way as described in the
third paragraph of this section.

COMMANDS

The TRS-80 Editor/ Assembler can perform the following
commands. These commands may be typed after the prompt
symbol_! where applicable. The asterisk indicates the
"command level" of the Editor/ Assembler. The following list
contains all command level instructions recognized by the
Editor/ Assembler with a brief description of each.

A Assemble source currently in text buffer

B

D

E

F

H

L

N

p

R

T

tor -.l-

•

w

Return to BASIC in ROM

Delete specified line(s)

Edit a specified command; almost exactly
like LEVEL II BASIC's EDIT command

Find a specified string of characters in the
text buffer

Same as P command except that output
goes to lineprinter

Insert source line(s) at a specified line with
a specified increment

Load a source file from cassette tape into
text buffer

Renumber source lines in the text buffer

Print specified range of source code
currently in the text buffer

Replace lines currently in text buffer. Like
the Insert command only lines are over­
written

Same as H only no line numbers are
printed - text only.

Scroll up or down. Will print the next or
previous source line

Horizontal tab

Write current text buffer onto tape

Assemble (A)

form: ."'_A[[~ filename) 1/switch[/switch) ...)]

switch may be any of the following four options

NL No listing written to screen. Errors and bad
source lines are still typed.

NO No object code. Inhibits recording of an
object code tape.

NS

LP

WE

No symbol table is to be printed

Send listing, errors, and symbol table to
the TRS-80 LINEPRINTER

Cause assembly to wait when an error
occurs. Depressing any key will continue
assembly until another error is found.
Depressing the "C" key will cause assembly
to continue without stopping for errors.
Pressing BREAK returns to command level
at any time.

The contents of the edit buffer are assembled. The object
code is written to cassette tape under the specified filename
(if no filename is specified the filename is automatically set
to NONAME.) An assembly error is usually written to the
monitor screen immediately before the line the error
occurred on.

After the assembly is completed the total number of errors is
printed. Finally, the symbol table is printed. The computer
then types:

READY CASSETTE
Prepare your object tape for recording and press ENTER. If
you don't want the object code, simply press BREAK and an
asterisk (command level) will be returned to you. This is the
default procedure which may be altered with the proper
switches.

Examples:

.!A

_!.A~IKKY

!_A/NS

_!A/NS/LP

.!.A~Q/NL

Basic (B)

form: .!.B

Assemble with filename of NON AME; list
on screen \
Same as above; object file is IKKY

Assemble with filename of NON AME, no
symbol table

Same as above yet all output is to line­
printer

Assemble with filename Q; no listing~ is a
mandatory blank

Typing a B and then ENTER will return you to a MEMORY
SIZE (power up) condition in ItEVEL II BASIC or a READY
state in LEVEL I BASIC.

Example:

.!.B

MEMORY SIZE?

Delete (D)

form: .!.D[linel I :line21]

Deletes the line or lines specified from the text buffer.

3

Examples:

_!.D#:*

_!.D.

_!.Dl(/)5

Edit (E)

form: .::E [line]

Deletes lines 1 (/J(/J through 5(/)(/) (inclu­
sive) from the text buffer

Deletes entire text buffer. Clears text buffer

Deletes line currently pointed to by
period(.).

Deletes the single line 1(/)5

Allows user to edit/modify source lines just like the EDIT
command in LEVEL II BASIC. TI1e only difference is that
the Delete command does not enclose deleted information in
exclamation points(!).

Examples:

!_E.

.:!'.E211

Edits current line pointed to by period (.).

Edit line 211

Sub-commands for Edit are A,C,D,E,H,I,K,L,Q,S,X.

Edit Subcommands

A

nC

nD

E

H

nKx

L

Q

nSx

X

Backspace

(SHIFT) (t)

ENTER

Restart edit

Change n characters

Delete n characters

End editing and enter changes

Delete remainder of line and insert string.
The H command should not be used to
delete an entire line of text. There must
always be at least one character on a
line, or future use of that line will cause
problems.

Insert string

Kill all characters up to the nth occurrence
ofX

Print the rest of the line and go back to
starting position

Quit and ignore all editing

Search for the nth occurrence of X

Move to the end of the line and insert

Move edit pointer back one space

Escape from any edit mode subcommand

ENTER the line in its present (edited)
form

The user should experiment with these 01 re for to the LEVEL
II BASIC Manual.

Find (F)

form: *}'[string]

where string is a sequence of 16 characters or less

The edit buffer is searched starting at . + 1 for the first occur•
rence of the specified string. If no string is specified, the
search is the same as that of the last F cormnand in which a
string was specified. If the search string is found the line con­
taining it is printed and period(.) is updated to the printed
line. If the string is not found STRING NOT FOUND is
printed and period(.) remains unchanged. P# is often used to
move period (.)to the beginning of the buffer prior to a
search.
Example:

~P#

~ --··--- ORG __________ 10~H

:t'._F3C0111

1/JI/Jl(/J</) VIDEO ORG 3C00H

:::,F

(/Jl/)21 J LD HL,3C01/JH

*

Hardropy {H)

form: :H[linel [:1ine2] J

Prints a line or group of lines onto the TRS-80 LINEPRINT­
ER. Period(.) is updated to point to the last line printed.
This command is exactly like the P command.

Example:

~Hl(/.Jf/J:5(/.J(/J

-~H-

:t'._H

Insert (I)

Sends all lines in the text buffer to printer

Sends lines 10</J through 5</J0 to printer

Send current line pointed to by period(.)
to the lineprinter.

Prints 15 lines starting with the current
line to the printer. Not very useful for line­
printer use.

form: ~- I line [,inc]

The I command is used to insert lines of text into the edit
buffer. All lines of source are usually entered with the I

4

command. After the I command is issued, line numbers are
generated and lines of text are inserted into the edit buffer
until one of the following conditions occurs:

a BREAK is typed (usually way lo exit)

the edit buffer is full

The line number of the next line to be inserted would be
greater than or equal to the next exit line in the buffer. TI1e
NO ROOM BETWEEN LINES message is typed.

TI1e line number of the next line to be inserted would be
greater than 65529.

ff inc is not specified it is assumed to be the last specified
value. Period(.) is updated to point to the last line inserted.
See section, Sample Use of the I command.

Note: Source lines may be up to 128 characters long. This
size line is ustrnlly not needed. It is recommended that
you use lines of approximately 6(/J characters each
(printout and listings will be neater).

Load (L)

form: * Lf~filename l

TI1e tape is searched for the file specified by filename. If the
specified file is found, its contents are added to the current
contents of the edit buffer. Note that this may result in
improperly sequenced line numbers which must be corrected
by use of the N command for proper operation. If the user
does not wish to add to the current text buffer, then the
buffer must be cleared by the D#: * command.

If filename is not given, the next file on the tape is loaded.

When reading, the familiar asterisks will flash in the upper
right corner of the screen. TI1e L command can only read
source files created by the Editor/ Assembler.

Example:

>l<_L Loads next source file

:. U6MYPROG Searches for and loads source file named
MYPROG. ~ is a mandatory blank

Number (N)

form: _:N[line[,inc 1]

The N command is used to renumber the lines in the edit
buffer. The first line in the buffer is assigned the number
specified or the default (/)(/J l 1/J(/) if line is not specified. The
remaining lines in the buffer are renumbered according to
the increment (inc) or the previous inc in an N ,R, or I
command if inc was not specified. Period(.) points to the
same line it did before the N command was used, but the
number of this line may be changed.

Examples:

~N

:N5

~Nl(/J,5

Print (P)

Renumbers from I(/)(/) with previous incre­
ment

Renumbers from 5 with previous increment

Renumber from 1(/J in steps of 5

form: :P[line I [:line2 I]

Prints a line or group of lines on the monitor screen. Period
(.) is updated to point to the last line printed.

Example:

?P#:*

*P.

*P

Replace (R)

Prints all lines in the text buffer

Prints lines 100 through 500 inclusive

Prints current line pointed to by period(.)

Prints 15 lines starting with the current
line. Repeated use of P allows printout of
source without lines being scrolled off
the screen

form: _"'_R[line [,inc I]

The R command only replaces one line and goes into
insert mode. If line exists, it is deleted then inserted. If line
doesn't exist it is inserted as with the I command. If inc is
not specified, the last inc specified by an I, R or N command
is used. Period(.) is always updated to the current line.

Example:

!R.

: Rl(,i)(il,10

Replace current line

Start replacing iines beginning at line I f/J(/J
and incrementing with 1(/J.

Start replacing at line 1 f/J(/J using last
specified increments.

form: *T[linel I :line21]

Print, a line or group of lines onto the TRS-80 LlNE
PRINTER. Period(.) is updated 10 point to the last line
printed. This command is much like the H command, only
no line numbers are prin1ed. Only the source text is
printed.

Example:

T#: Sends all lines in the text buffer to
printer

:Tl00:500

*T.

Scroll and Tab

Sends text for lines I 0qJ through .'i~)qJ tu
printer

Sends current line pointed to by period
(.) to the lineprinter.

The Editor/ Assembler recognizes the following special
characters:

ScroHup

The t command prints the line preceding the current line and
updates period(.) tu the printed line. (If the current line is
the first line in the edit buffer, it is printed and period(.)
remains unchanged.)

Scrolldown_

The .J, command prints the line following the current !inc and
updates period(.) to point to the printed line. (If the current
line is the last line in the buffer, it is printed and period(.)
remains unchanged.)

Note: Both 't and .J, rnust be the first character of the com­
mand line or they will be ignored.

Tab

Typing·• tahs right to the next 8 character field Calling the
first position of a source line l (]ine number not counted),
the tahs are at positions 9, l .41.49 ,5 I and continue
on in increments of 8 up to 255. Tabs should alwavs be used
instead of spaces to conserve text buffer space. A. tab (09
hex) only takes up one byte.

Delete character

Backarrow('-) will delete the last character typed. If the last
character was a tab, the cursor jumps back\vards to the next
non-blank character.

(Shift ..--·1 Delete Line

A (Shift~) will delete all. of the line cnrrently being entered.
This is true for both source lines and commands.

(Shift (t~'Hause

At any time during an Assembly 01 printout a (Shirt may
be typed to halt the cornputer. Pressing ENTER will
continue the process. The (Shift will nut be accepkd
while a line is being printed or assembled; only between line5.
A pause received while assembling \Vil! not be rec.ogni;,;ed

TEXT DEFM 'TRS-80 MICR()COMPUTFR'

while bytes of the text string arc being :iss,:mbled ..
Another pause rrnm tw typed after this line is finished
being assernb!ed.

Write (W)

form: _:l'._W[~filename]

The contents of the edit buffer are written onto a cassette
file under the name filename. If filename is not specified no
file name is used. Period (.) is always left unchanged.

Example:

_:l'._W

.:.~DEMO

Records text buffer to tape with no file­
name

Records text buffer to tape with a file­
name of DEMO. ~ is a mandatory blank.

SA

Cassette Tapes

All cassette rapes created by the Fditor/ Assembler are writ­
ten al 5~,CiJ baud. The cassette tape containing the Editor/
Assembler is also at 5(/J(/J baud. Whenever reading a 5(/J(/J baud
tape tit(' VOLUME LEVEL MUST BF BETWEEN 5 AND 6.

The SYSTEM tape, included with the Fditor/Assembler.
allows LEVEL I BASIC to read-in the S(iJ(/) baud Editor/
Assembler tape. First read-in the 25(/J baud SYSTEM tape
(with volume at 8 to 9), and then load in the Editor/
Assembler (at volune 5 to 6) as specified in section on
Loading.

LEVEL IT BASIC may directly read-in the 5(/J(j) baud Editor/
Assembler tape.

Execution of ob1cct code programs stored on tapes is per­
formed with the SYSTEM command in LEVEL ll BASIC.
LEVEL I BASIC must again use the SYSTEM tape to read-in

TRS-80 EDITOR/ASSEMBLER

.:_1100,10

00100 [-I ORG 5000H

00110 IDEO EQU 3C00H

00120 LD HL,VIDEO

00130 LD DE,VIDEO+l

00140 LD BC,400H

00150 LD (HL) , 0BFH

00160 LDIR

and then execute object code from a 5(/J</J baud tape.
Examples of creating object code and then executing it are
given in st.1ction on Sample Use.

Filenames ·--·----····~---···-·

Cassette filenames must begin with an alphabetic character.
The remaining characters must be alphanumeric. The length
may not exceed 6 characters. Filenames need not be
specified for the A or W commands and in the even 1. that a
name is not specified, the file is assigned the NON AME
filename. l fa filename is not specified when using the
L command, the first file encountereµ on the tape is loaded
into memory.

Sample Use

The following is a sample session using the Editor/ Assembler
to write a program. Comments to the reader are enclosed in
[] and are not part of the program.

[-• ISA TAB]

;SOURCE ADDRESS

;DEST. ADDRESS

;BYTE COUNT

;GRAPHICS BYTE

;WHITE OUT SCREEN

00170 ;DELAY LOOP TO KEEP WHITE OUT SCREEN ON

00180 LD

00190 LPl LD ;..,., .. ,

00200 DEC

00210 LD

00220 OR

00230 JP

00240 DJNZ

00250 JP

00260 END

00270 [BREAK]

8,5

HL,0FFFFH

HL

A,H i ,,:,

L

NZ,LP2

LPl

0H

6

:VALUE TO DECREMENT

;HL=0?

;IF NO DEC AGAIN

;DEC.B--B=0?

;RETURN TO BASIC

~A XXX [Assemble] [All the following is computer output]

5000 00100 ORG 5000H

K00 00110 EQU 3C00H

5000 21003C 00120 LD HL,VIDEO ;SOURCE ADDRESS

5003 11013C 00140 LD DE,VIDEO+l ;DEST. ADDRESS

5006 010004 00)40 LD BC,400H ;BYTE COUNT

5009 36BF 00150 LD (HL) ,0BFH ;GRAPHICS BYTE

500B EDB0 00160 LDIR ;WHITE OUT SCREEN

00170 ;DELAY LOOP TO KEEP WHITED OUT SCREEN ON

5.00D 0605 0.0180 LD B,5

500F 21FFFF 00190 LPl LD HL,0FFFFH ;VALUE TO DECREMENT

5012 2B 00200 LP2 DEC HL

5013 7C 00210 LD A,H

5014 B5 00?20 OR L ;HL=0?

5015 C21250 00230 JP NZ,LP2 ;IF NO DEC AGAIN

;018 10F5f 00240 DJNZ LPl ;DEC.B--B=0?

501A C3.0000 00250 JP 0H ;RETURN TO BASIC

0.000 00260 END

00000 TOTAL ERRORS

LP2 5012 [Symbol table]

[Load tape; set to RECORD]

LPl 500F

VIDEO 3C00

READY CASSETTE

[ENTER] [Press ENTER to record object code]

*

Now you can save the information in the text buffer (YOUR
SOURCE PROGRAM) onto another tape.

"!_WMYPROG

The tape file MYPROG may be read in by the Editor/
Assembler's L command.

Any assembler errors are printed immediately before the line
the error occurred in.

7

Execution in LEVEL I BASIC

First load the SYSTEM tape (included with your Editor/
Assembler). Put the SYSTEM tape into your cassette. Be sure
volume is between 8 and 9. Type CLOAD, to load in the
SYSTEM tape. The program will execute as soon as loading
is completed and will type:
*
Now enter the filename of your object tape, which was
created by the Editor/ Assembler. Note that you must

use the filename NON AME if a filename was not specified.
With the example program type XXX, the filename of the
object tape.

* XXX

At this point put the object tape XXX into the cassette
recorder and press PLAY. The volume must be at 5 to 6
(this is a 5(/J(/J baud tape). A5terisks will flash in the upper
right screen corner. Once loading is complete the computer

type "' again. Now you must enter the starting address
of the machine code program. The starting address (ORG)
was 5(/J(,i;(/JH which is a decimal. 2(/)48(/J. Now type this
decimal number preceded with a slash (/). The command
looks like this:

* /20480

Press ENTER, of course, and the machine code program will
execute. The sample program will white-out the video
screen with solid graphics characters. This will stay on the
screen for about 5 seconds. The program will then return to

READY condition in BASIC.

Executing in LEVEL JI BASIC

Execution is much simpler in LEVEL II BASIC. The object
tape is again loaded at 5 to 6 volume (as are all 5(/J(/) baud
tapes). The typing is as follows; comments are in brackets [] :

READY

> SYSTEM

*? XXX [read in object tape]

*? /20480

The program will now execute and then return to a power up
condition (ENTER MEMORY SIZE?).

Multiple Modules

You may load several machine language programs into
memory, one after the other. The ORG addresses of these
instructions must be such that each object program does not
conflict with other modules. If you have the following files:

XXX
yyy
zzz

7(/J(/J(/) to 7~FF hexidecimal
71 (/)(/) to 71 FF hexidecimal
72(/)(/) to 72FF hexidecimal

You may then enter the three programs as follows:

*? XXX

*? yyy

*? zzz

*? /28672 [jump to XXX program]

8

ASSEMBLY LANGUAGE

Syntax

The basic format of an assembly command is:

[LABEL] OPCODE

Examples:

ORG

VIDEO EQU

[OPERAND(S)I

7(/)(/)(/)H

3C(/)(/)H

IC'OMMENT]

LD DE,VlDEO+l ;DESTINATION

LABELS

A label is a symbolic name of a line code. Labels are always
optional. A label is a string of characters no greater than
6 characters. The first character must be a letter. A label may
not contain the $ character. $ is reserved for the value of
the reference counter of the current instruction.

The following labels are reserved for referring to registers only
and may not be used for other purposes: A,B,C,D,E,H,L,I,R,
IXJY,SP,PC,AF,BC,DE, and HL.

The following 8 labels are reserved for branching conditions
and may not be used for other purposes (these conditions
apply to status flags):

FLAG CONDITION SET CONDfTION NOT SET

Carry C NC

Zero z NZ

Sign M(minus) P(plus)

Parity PE(even) PO(odd)

Example: JPNZ, LOOP

If the zero flag is clear (not set), the above instruction jumps
to the instruction specified by LOOP.

9PCODES

The opcodes for the TRS-80 Editor/ Assembly exactly
correspond to those in the Z-80-Assembly Language_
Programming Manual, 3 .0 D.S., REL. 2 .1, FEB 19 77. See
section Index to Instruction Set for the instruction in
question.

OPERANDS

Operands are always one or two values separated by commas.
Some instructions require no operands at all.

Examples:

LD HL, 3C!lxi)H

XOR

LD

A

(HL), 2(/JH

A value in parentheses () specifies indirect addressing when
used with registers, or "contents of" otherwise.

Constants may end in any of the following letters:

H - hexidecimal

D - decimal

0 - octal

A constant not followed by one of these letters is assumed to
be a decimal. A constant must begin with a digit. Thus FFH
is illegal, while (/JFFH is legal.

Expressions using the+,-,&, operations are described in
section, Expressions.

COMMENTS

All comments must begin with a semicolon (;). If a source
line starts with a semicolon in column 1 of the line, the
entire line is a comment.

Expressions

A value of an operand may be an expression consisting of
+,--,&,or (symbols. These operations are executed in a
strictly left to right order. No parentheses are allowed. All
four operators are binary. Both + and - have unary uses
also.

Addition(+)

The plus will add two constants and/or symbolic values. When
used as a unary operator, it simply echoes the value.

Example:

(/J(plE CON3(/J EQU 3(/J

Q(/Jl(/J CON16 EQU 1(/JH

(/J(p(/)3 CON3 EQU 3

3C(/J(/J VIDEO EQU 3CQ)(pH

3C(/J3 Al EQU VIDEO+ CON3

v)Ql2E A2 EQU CON3(/J + CONJ 6

3Cv)(/J A3 EQU + VIDEO

Subtraction (--)

The minus operator will subtract two constants and/or
symbolic values. Unary minus produces a 2's complement.

9

Examples:

3BFD

Logical AND(&)

Al

A2

A3

EQU VIDEO-CON3

EQU CON3(/J-CON16

EQU -VIDEO

The logical AND operator logically adds two constants
and/or symbolic values.

Examples:

3C</J0

Q)(/J(/J</J

</J(/JQ)(/J

Al

A2

A3

EQU 3C(/JqJH & FFH

EQU qJ & 15

EQU Q)AAAAH & 5555H

Shift (()

The shift operator can be used to shift a value left or right.
The form is:

VALUE AMOUNT

If AMOUNT is positive, VALUE is shifted left. If AMOUNT
is negative, VALUE is shifted right.

Examples:

BBFF

(/J3C(1J

Al

A2

A3

A4

EQU 3C0</JH (4

EQU 3C(/J</JH (-4

EQU 3CBBH < 8 + 255

EQU 15 + 3C(i)(1JH < -4

Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F') supplies infonnation to the user
regarding the status of the 280 at any given time. The bit
positions for each flag are shown below:

76543 2 1(/J

I s I z I X I H I X I P/V I N I C I
WHERE:

C ""
N""
P/V=
H ""
z =
s ::,;
X"'

CARRY FLAG
ADD/SUBTRACT FLAG
PARITY /OVERFLOW FLAG
HALF-CARRY FLAG
ZERO FLAG
SIGN FLAG
NOT USED

Each of the two Z-80 Flag Registers contains 6 bits of status
infomiation which are set or reset by CPU operations. (Bits
3 and 5 are not used.) Four of these bits are testable (C,P/V,
Zand S) for use with conditional jump, call or return
instructions. Two flags are not testable (H,N) and are used
for BCD arithmetic.

CARRY FLAG (C)

The carry bit is set or reset depending on the operation being
perfonned. For 'ADD' instructions that generate a carry and
'SUBTRACT' instructions that generate no borrow, the
Carry Flag will be set. The Carry Flag is reset by an ADD
that does not generate a carry and a 'SUBTRACT' that
generates a borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the 'DAA'
instruction will set the Carry Flag if the conditions for
making the decimal adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is
used as a link between the LSB and MSB for any register
or memory location. During instructions RLCA, RLC sand
SLA s, the carry contains the last value shifted out of bit 7 of
any register or memory location. During instructions RRCA,
RRC s, SRA sand SRL s the carry contains the last value
shifted out of bit (/J of any register or memory location.

For the logical instructions AND s, OR sand XOR s, the
carry will be reset.

The Carry Flag can also be set (SCF) and complemented
(CCF).

ADD/SUBTRACT FLAG (N)

This flag is used by the decimal adjust accumulator instruc­
tion (DAA) to distinguish between 'ADD' and 'SUBTRACT'
instructions. For all 'ADD' instructions, N will be set to a
'(/J'. For all 'SUBTRACT' instructions, N will be set to a
''l ".

PARITY /OVERFLOW FLAG

This flag is set to a particular state depending on the
operation being performed.

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than
the maximum possible number (+127) or is less than the
minimum possible number (-128). This overflow condition
can be determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the
result has a different sign, the overflow flag is set. For
example:

+120
+l(j)5
+225

= ()111 11/J(/J(/J
= (j)l l(j) I(j)()i1

ADDEND
AUGEND
(-95) SUM

10

The two numhers added together has resulted in a nurnher
that exceeds+ l 27 and the two positive operands has resulted
in a negative number (---95) which is incorrect. The overflow
t1ag is therefore set.

For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For
example:

+127 (/)11 l 1111 MINUEND
(-)·64 _ 11(/)(pfp()Jh(f) ... ____ SUBTRAHEND

+191 1(/Jll 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative,
giving an incorrect difference. Overflow is therefore set.

Another method for predicting an overflow is to observe
the carry into and out of the sign bit. If there is a carry in
and no carry out, or if there is no carry in and a carry out,
then overflow has occurred.

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number
of '1' bits in a byte are counted. If the total is odd, 'ODD'
parity (P=(/J) is flagged. If the total is even, 'EVEN' parity is
flagged (P== 1).

During search instructions (CPI,CPIR,CPD,CPDR) and block
transfer instructions (LDI,LDIR,LDD,LDDR) the P/V flag
monitors the state of the byte count register (BC). When
decrementing, the byte counter results in a zero value, the
flag is reset to (/J, otherwise the flag is a Logic 1.

During LD A,I and LD A,R instructions, the P/V flag will be
set with the contents of the interrupt enable flip-flop (IFF2)
for storage or testing.

When inputting a byte from an 1/0 device, IN r,(C), the flag
will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)

The Half Carry Flag (H) will be set or reset depending on the
carry and borrow status between bits 3 and 4 of an 8-bit
arithmetic operation. This flag is used by the decimal adjust
accumulator instruction (DAA) to correct the result of a
packed BCD add or subtract operation. The H flag will be
set (l) or reset (0) according to the following table:

H ADD SUBTRACT

1 There is a carry from There is no borrow
Bit 3 to Bit 4 from bit 4

fj) There is no carry There is a borrow
from Bit 3 to Bit 4 from Bit 4

THE ZERO FLAG (Z)

The Zero Flag (Z) is set or reset if the result generated by
the execution of certain instructions is a zero.

For 8-bit arithmetic and logical operations, the Z flag will
be set to a '1' if the resulting byte in the Accumulator is
zero. If the byte is not zero, the Z flag is reset to '(/J'.

For compare (search) instructions, the Z flag will be set to
a 'I' if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated
bit (see Bit b,s).

When inputting or outputting a byte between a memory
location and an 1/0 device (INI;IND;OUTI and OUTD), if
the result of B-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from 1/0 devices using IN r ,(C),
the Z Flag is set to indicate a zero byte input.

THE SIGN FLAG (S)

The Sign Flag (S) stores the state of the most significant bit
of the Accumulator (Bit 7). When the Z80 performs arith­
metic operations on signed numbers, binary two's comple­
ment notation is used to represent and process numeric
information, A positive number is identified by a '(/J' in bit
7. A negative number is identified by a 'l '. The binary
equivalent of the magnitude of a positive number is stored in
bits (/J to 6 for a total range of from (/J to 127. A negative
number is represented by the two's complement of the
equivalent positive number. The total range for negative
numbers is from ~I to -128.

When inputting a byte from a 1/0 device to a register, IN
r ,(C), the S flag will indicate either positive (S=(n or negative
(S=l) data.

PSEUDO-OPS

Th.ere are nine pseudo-op (assembler directives) which the
assembler will recognize. These assembler directives, although
written much like processor instructions, are commands
to the assembler instead of the processor. They direct the
assembler to perform specific tasks during the assembly
process but have no meaning to the Z80 processor. These
assembler pseudo-ops are:

ORGnn

EQUnn

DEFLnn

END

Sets address reference counter to the
value nn.

Sets value of a label to nn in the program:
can occur only once for any label.

Sets value of a label to nn and can be
repeated in the program with different
values for the same label.

Signifies the end of the source program so
that any following statements are ignored.
If no END statement is found, a warning
is produced. The END statement can spec-

DEFB n

DEFB 's'

DEFW nn

DEFS nn

DEFM 's'

ify a start address i.e. END LABEL, END
6(/J(/J(/JH. This address is used by the system
program if no start address is given with
the slash (/).

Defines the contents of a byte at the
current reference counter to be n.

Defines the content of one byte of
memory to be the ASCH representation of
characters.

Defines the contents of a two-byte word to
be nn. The least significant byte is located
at the current reference counter while the
most significant byte is located at the
reference counter plus one.

Reserves nn bytes of memory starting at
the current value of the reference counter.

Defines the content of n bytes of memory
to be the ASCII representation of string
s, where n is the length of sand must be in
the range (/J (=n < == 63.

Assembler Commands

The TRS-80 Editor/ Assembler supports only two assembler
commands. Each command must start in column one of a
source line, and must start with an asterisk(*). The
assembler commands are:

*LIST OFF

*LIST ON

Causes the assembler listing to be
suspended, starting with the next line.
Errors and bad source lines will still be
printed.

Causes assembler listing to resume, starting
with this line.

Z80 INDEX TO INSTRUCTION SET

NOTE: Execution time (E.T.) for each instruction is given in
microseconds for an assumed 4 MHZ clock. Total machine
cycles (M) are indicated with total clock periods (T States).
Also indicated are the number of T States for each M cycle.
For example:
M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.L 1.75

indicates that the instruction consists of 2 machine cycles.
The first cycle contains 4 clock periods (T States). The
second cycle contains 3 clock periods for a total of 7 clock
periods or T States. The instruction will execute in 1.7 5
microseconds.

Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the
right.

11

INSTRUCTION SET
TABLE OF CONTENTS Page

-8 BIT LOAD GROUP 13

-16 BIT LOAD GROUP 24

-EXCHANGE, BLOCK TRANSFER
AND SEARCH GROUP 34

-8 BIT ARITHMETIC AND LOGICAL GROUP 43

-GENERAL PURPOSE ARITHMETIC
AND CPU CONTROL GROUPS 56

-16 BIT ARITHMETIC GROUP -63

-ROTATE AND SHIFT GROUP ·69

-BIT SET, RESET AND TEST GROUP 81

-JUMP GROUP -86

-CALL AND RETURN GROUP -92

-INPUT AND OUTPUT GROUP ·98

-INDEX

12

OPERAND NOTATION

The following notation is used in the assembly language:

1) r specifies any one of the following registers: A,B,C,D,
E,H,L.

2) (HL) specifies the contents of memory at the location
addressed by the contents of the register pair HL.

3) n specifies a one-byte expression in the range ((/J to
255) nn specifies a two-byte expression in the range
(</J to 65535)

4) d specifies a one-byte expression in the range (-128,
127).

5) (nn) specifies the contents of memory at the location
addressed by the two-byte expression nn.

6) b specifies an expression in the range ((/J,7).
7) e specifies a one-byte expression in the range (-126,

129).
8) cc specifies the state of the Flags for conditional JR

and JP instructions.
9) qq specifies any one of the register pairs BC, DE, HL

or AF.
l 0) ss specifies any one of the following register pairs:

BC, DE, HL, SP.
11) pp specifies any one of the following register pairs:

BC,DE,IX,SP.
12) rr specifies any one of the following register pairs:

BC,DE,IY,SP.
13) s specifies any of r,n,(HL),(IX+d),(IY+d).
14) dd specifies any one of the following register pairs:

BC ,DE,HL,SP.
15) m specifies any ofr,(HL),(IX+d),(IY+d).

8 BIT LOAD GROUP

LD r, r'
Operation: r +- r'

Format:

Opcode

LD

Operands

r,r'

Description:

The contents of any register r' are loaded into any other
register r. Note: r,r' identifies any of the registers A, B, C,
D, E, H, or L, assembled as follows in the object code:

Register u.'..

A = 111
B = ~l]I)
C = 0~1
D = 01~
E = 011
H = 100
L = 101

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

4 MHZ E.T.: 1.0

If the H register contains the number BAH, and the E register
contains I 0H, the instruction

LOH, E

would result in beth registers containing I 0H.

13

LD r, n
Operation: r +- n

Format:

Opcode

LD

Operands

r,n

I a: o~r~< i'. oj
I : : : n: : : : I

Description:

The eight-bit integer n is loaded into any register r, where r
identifies register A, B, C, D, E, Hor L, assembled as follows
in the object code:

Register L

A = 111
B = 000
C = 001
D = 010
E = 011
H = 1~0
L = 101

MCYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

After the execution of

LOE, ASH

the contents of register E will be ASH.

4 MHZ E.T.: 1.75

LO r, (HL)
Operation; r +- (H L)

LD r, (HL)

Description;

The eight-bit contents of memory location (HL) are loaded
into register r, where r identifies register A, B, C, D, E, H
or L, assembled as follows in the object code:

Register I_"_

A = 111
·B = f/J(/J(/J
C = (/J(/Jl
D = (/Jl(/J
E = (/Jll
H = 1 (/J(/J
L = 1 (/Jl

MCYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

If register pair HL contains the number 75AlH, and memory
address 75A1H contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

14

LD r, (IX+d)
Operation: r~(IX+d)

Fonnat:

LD

Operands

r, (IX+d)

11:1:0:1:1:1:0:11

Io: l~r~i'. i: ol

I : : : d : : : : I
Description:

DD

The operand (IX+d) (the contents of the Index Register IX
summed with a displacement integer d) is loaded into register
r, where r identifies register A, B, C, D, E, Hor L, assembled
as follows in the object code:

Register L

A = 111
B = (/J(/J(/J
C = (/J(/Jl
D = f/)1(/J
E = (/J 11
H = lf/J(/J
L = 1(/Jl

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the
instruction

LD B, (IX+l9H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

LD r, (IY+d)
Operation: r +- (IY+d)

Format:

LD

Operands

r, (IY+d)

li'.i'.1'.i'.i'.<0:11
1 o: J~r~i: i: o 1

I : : : d : : : : I
Description:

FD

The operand (IY+d) (the contents of the Index Register IY
summed with a displacement integer d) is loaded into register
r, where r identifies register A, B, C, D, E, H or L, assembled
as follows in the object code:

Register !'....

A ::: 111
B ::: t/J(/Jt/J
C ::: 1/Jt/Jl
D = t/J 1 t/J
E ::: 1/Jll
H = 11/J(/J
L ::: 11/Jl

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

Jf the Index Register IY contains the number 25AFH, the
instruction

LD 8, (IY+19H)

will cause the calculation of the sum 25 AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

15

LD (HL), r
Operation: (HL) +- r

Format:

LD (HL), r

1 a: 1 ~ 1: 1: a ~r~I
Q~~cription:

The contents of register r are loaded into the memory
location specified by the contents of the HL register pair.
The symbol r identifies register A, B, C, D, E, Hor L,
assembled as follows in the object code:

Register !"_

A :::: 111
B = t/Jt/J(/J
C = 1/Jt/Jl
D = 1/JH/;
E = 1/Jl l
H = 11/Jt/J
L ::: l 1/J 1

MCYCLES: 2 T STATES: 7(4,~) 4 MHZ E.T.: l .75

(:ondition Bits Affected_: None

If the contents of register pair HL specifies memory location
2146H, and the B register contains the byte 29H, after the
execution of

LD (HL), B

memory address 2146H will also contain 29H.

LD (IX+d), r
Operation: (IX +d) +-r

Format:

Opcode Operands

LD (IX+d), r

11 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

1 o: 1 : 1: 1: a :~r~ 1

I : : : d : : I : : I
Description:

The contents of register r are loaded into the memory
address specified by the contents of Index Register IX
summed with d, a two's complement displacement integer.
The symbol r identifies register A, B, C, D, E, H or L,
assembled as follows in the object code:

Register !'...

A = 111
B = r/Jr/Jr/J
C = r/JQl
D = r/Jlr/J
E = (/Jl 1
H = 1~
L = 1(/Jl

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 1 CH, and the Index
Register IX contains 31(/Jl,m, then the instruction

LD (IX+6H), C

will perform the sum 31 r/Jr/JH + 6H and will load 1 CH into
memory location 31(/J6H.

16

LD (IY+d), r
Operation: (I Y +d) ~ r

Format:

Opcode

LD

Operands

(IY+d), r

11:1:1:1:1:1:0:11
IO: 1: 1: 1: O~r:-1
I : : : d : : : : I

Description:

FD

The contents of register r are loaded into the memory
address specified by the sum of the contents of the Index
Register IY and d, a two's complement displacement integer.
The symbol r is specified according to the following table.

Register r -

A = 111
B = r/Jr/Jr/J
C = r/Jr/Jl
D = r/Jlr/J
E = r/Jll
H = 1(/Jr/J
L = 1(/Jl

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index
Register IY contains 2Al 1H, then the instruction

LD (IY+4H), C

will perform the sum 2Al 1H + 4H, and will load 48H into
memory location 2Al 5.

LD (HL), n
Operation: (H L) +· n

Format:

Opcode

LD

Operand

(HL),n

1 a : a : 1 : 1 : o : 1 : 1 : o 1 36

I : : >: : : : I
Description:

Integer n is loaded into the memory address specified by the
contents of the HL register pair.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

lfthe HL register pair contains 4444H, the instruction

LD (HL}, 28H

will result in the memory location 4444H containing the
byte 28H.

17

LO (IX+d), n
Operation: (IX+d) +- n

Format:

LD (IX+d), n

I 1 : 1 : 0 : l : 1 : 1 : 0 : 1) DD

I O : 0 : 1 : 1 : 0 : 1 : 1 : 0 I 36

I ; : : d : : : : I
I : : : n ; : : : I

Description:

The n operand is loaded into the memory address specified
by the sum of the contents of the Index Register IX and the
two's complement displacement operand d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affec!~cl_: None

Example:

If the Index Register IX contains the number 219 AH the
.instruction

LD (IX+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

LO (IY+d), n
Qperation: (IY+d} .,._ n

Format:

Opcode

LD

Opera11ds

(IY+d),n

[1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

1 o : a : 1 : 1 : o : 1 : i; o 1 36

I : ; >< : : : I
I : : : n : : : : I

Description:

Integer n is loaded into the memory location specified by the
contents of the Index Register summed with a displacement
integer d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number A94~H, the
instruction

LD (IY+10H), 97H

would result in byte 97 in memory location A95~H.

18

LO A, (BC)
Operation: A+- (BC)

Operands

LD A, (BC)

Description:

The contents of the memory location specified by the
contents of the BC register pair are loaded into the
Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

4 MHZ E.T.: 1.75

If the BC register pair contains the number 4747H, and
memory address 4747H contains the byte 12H, then the
instruction

LD A, (BC)

will result in byte I 2H in register A.

LD A, (DE)
Operation: A+- (DE)

Format:

Opcode

LD

Operands

A, (DE)

1 o : o : o : 1 : 1 : o : 1 : o 1 lA

Description:

The contents of the memory location specified by the
register pair DE are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

4 MHZ E.T.: 1.75

If the DE register pair contains the number 30A2H and
memory address 30A2H contains the byte 22H, then the
instruction

LD A, (DE)

will result in byte 22H in register A.

19

LD A, (nn)
Operation: A+-_ (nn)

Format: ---

LD

Operands

A, (nn)

10:0:1:1:1:0:1:01

I : : : n : : : : I
I : : : n : : : : I

Description:

3A

The contents of the memory location specified by the
operands nn are loaded into the Accumulator. The first n
operand is the low order byte of a two-byte memory address.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

If the contents of nn is number 8832H, and the content of
memory address 8832H is byte 04H, after the instruction

LD A, (nn)

byte 04H will be in the Accumulator.

LD (BC), A
Qper,at~ns: (BC) ..- A

Fonnat:

LD

Operands

(BC),A

1 o : a : o : r)_: a : o : 1 : o I

Description:

02

The contents of the Accumulator are loaded into the
memory location specified by the contents of the register
pair BC.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

ConditionHits 1\Jfect~~: None

Example:

If the Accumulator c(mtains 7 AH and the BC register pair
contains l 2l 2H the instruction

LD {BC) ,A

will result in 7 AH being in memory location I 212H.

20

LO (DE), A
Operation: (DE) .,.... A

Fonnat:

Operands

LD (DE),A

1 o : a : o : ; : a : a : 1 : a 1
12

Description:

The contents of the Accumulator are loaded into the
memory location specified by the DE register pair.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

CQndition_Bits Affected: None

If the contents of register pair DE are 1128H, and the
Accumulator contains byte A0H, the instruction

LD (DE) , A

will result in A0H being in memory location 1128H.

LD (nn), A
Operation: (nn) +- A

Format:

LD

Operands

(nn),A

1 a : a : 1 : 1 : a : a : 1 : a 1 32

I : : : n : : : : I
I : : : n : : : : I

Description:

The contents of the Accumulator are loaded into the
memory address specified by the operands nn. The first n
operand in the assembled object code above is the low order
byte ofnn.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the
execution of

LO (3141H),A

D7H will be in memory location 3141H.

21

LD A, I
Operation: A+- I

Format:

Opcode

LD

Operands

A,I

11 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED

1 a : 1 : a : 1 : a : 1 : 1 : 1 1 57

Description:

The contents of the Interrupt Vector Register I are loaded
into the Accumulator.

MCYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S:
Z:
H:

P/V:
N:
C:

Example:

Set if I-Reg. is negative; reset otherwise
Set if I-Reg. is zero; reset otherwise
Reset
Contains contents of IFF2
Reset
Not affected

If the Interrupt Vector Register contains the byte 4AH, after
the execution of

LO A, I

the accumulator will also contain 4AH.

LDA, R

()pcode

LD

OpJ;?rands

A,R

11:1:1:0:1:1:0:11 ED

I O : i: 0 : < < < i: 1 I 5F

The contents of Memory Refresh Register Rare loaded
into the Accumulator.

MCYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S:
Z:
H:

P/V:
N:
C:

Example:

Set if R-Reg. is negative; reset otherwise
Set if R-Reg. is zero; reset otherwise
Reset
Contains contents of IFF2
Reset
Not affected

If the Memory Refresh Register contains the byte 4AH,
after the execution of

LD A,R

the Accumulator will also contain 4AH.

22

LD I, A
OJ!eration: I +- A

Fonnat:

Opcode

LD I,A

li'.i'.i'.o:i'.i'.0:11
lo: i'.o:o:o: i'. i: ii

Description:

ED

47

The contents of the Accumulator are loaded into the
Interrupt Control Vector Register, I.

MCYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected: None

Example:

4 MHZ E.T.: 2.25

If the Accumulator contains the number 81 H, after the
instruction

LD I,A

the Interrupt Vector Register will also contain 81 H.

LD R, A
Operation: R +- A

Format:

LD

Operands

R,A,

1i:i:i:a:i:i:a:11
lo:i:o:a:i'.i'.i'.11

Description:

ED

4F

The contents of the Accumulator are loaded into the
Memory Refresh register R.

MCYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected: None

Example:

4 MHZ E.T.: 2.25

If the Accumulator contains the number B4H, after the
instruction

LD R,A

the Memory Refresh Register will also contain B4H.

23

16 BIT LOAD GROUP

LD dd, nn
Operation: dd +- nn

OJ!_code

LD

O,1Letands

dd,nn

I O : 0 : d : d : 0 : 0 : 0 : 1 I
I : : : n: : : : I
I : : : n : : : : I

Description:

The two-byte integer nn is loaded into the dd register pair,
where dd defines the BC, DE, HL, or SP register pairs,
assembled as follows in the object code:

f:>lli_i:_ M

BC (/J(/)
DE (/J l
HL 1(/J
SP 11

The first n operand in the assembled object code is the low
order byte.

M CYCLES: 3 T STATES: 1(/)(4,3 3) 4 MHZ E.T.: 2.5(/J

Condition Bits Affe~tecl: None

Example:

After the execution of

LD HL. 5000H

the contents of the HL register pair will be 5(/)Q)(/)H.

24

LD IX, nn
Operation: IX +- nn

Format:

LD IX,nn

li'.1'.o:i:1:1'.0:11
1 a : o : 1 : a : o : o : a : 1 1

[: : : n : : : : I
I : =: n: : : : I

Description:

DD

21

Integer nn is loaded into the Index Register IX. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.51/J

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

the Index Register will contain integer 45A2H.

LD IV, nn
Operation: I Y ..- nn

Format:

LD IY,nn

11:1:1:i:1:i:o:11

1 o : o : 1 : o : o : o : o : 1 1

I : : : n : : : : I
I : : : n: : : : I

Description:

FD

21

Integer nn is loaded into the Index Register IY. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

After the instruction:

LD IY,7733H

the Index Register IY will contain the integer 7733H.

25

LD HL, (nn)
Operation: H ..- (nn+1), L ,._ (nn)

Format:

Operands

LD HL, (nn)

10:0:1:0:1:0:1·:01

I : : : n : : : : I
I : : : n: : : : I

Description:

2A

The contents of memory address nn are loaded into the low
order portion of register pair HL (register L), and the
contents of the next highest memory address nn+ I are
loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low
order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains
Al Hafter the instruction

LD HL,(4545H)

the HL register pair will contain A 137H.

LD dd, (nn)
Operation: ddH ~ (nn+1), ddl +- (nn)

Format:
-•~~~·•·~

LD dd,(nn)

11:1:1:0:1:1:0:11

10:1:d:d:1:o:1:11

I : : : n : : : : I
I : : : n : : : : I

Description:

ED

The contents of address nn are loaded into the low order
portion of register pair dd, and the contents of the next
highest memory address nn+ I are loaded into the high order
portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair

BC
DE
HL
SP

dd

(/J(/J
(/Jl
1(/J
11

The first n operand in the assembled object code above is
the low order byte of (nn).

M CYCLES: 6 T STATES: 2(/)(4,4,3,3,3,3) 4 MHZ E.T.: 5.f/J(/J

Cpndition Bits Affected: None

Example:

If Address 213(/JH contains 65H and address 2131M contains
78H after the instruction

LD BC,(213.0H)

the BC register pair will contain 7865H.

26

LD IX, (nn)

Format:

Operands

LD IX,(nn)

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I O : 0 : 1 : 0 : i: 0 : 1 : 0 I 2A

I : : : n : : : : I
I : : : n : : : : I

Description:

The contents of the address nn are loaded into the low order
portion of Index Register IX, and the contents of the next
highest memory address nn+ 1 are loaded into the high order
portion of IX. The first n operand in the assembled object
code above is the low order byte of nn.

M CYCLES: 6 T STATES: 2(/)(4,4,3,3,3,3) 4 MHZ E.T.: 5.(/J(/J

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD IX,(6666H)

the Index Register IX will contain DA92H.

LD IV, (nn)
Operation: IYH ~ (nn+1), IYL ~ (nn)

Format:

Operandi;

LD IY,(nn)

11:1:i:i:i:1:a:11 FD

I Q : 0 : i; 0 : < 0 : i: 0 I 2A

I : : : n: : : : I
I : : : n: : : : I

Description:

The contents of address nn are loaded into the low order
portion of Index Register IY, and the contents of the next
highest memory address nn+ 1 are loaded into the high order
portion of IY. The first n operand in the assembled object
code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00'

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LO IY, (6666H)

the Index Register IY will contain DA92H.

27

LO (nn), HL
Operation: (nn+1) ~ H, (nn) ~ L

Format:

Operands

LD (nn),HL

jo:a: 1:0:a:a: i;oj
I : : : n: : : : I
I : : : n: : : : I

Description:

22

The contents of the low prder portion of register pair HL
(register L) are loaded into memory address nn, and the
contents of the high order portion of HL (register H) are
loaded into the next highest memory address nn+ 1. The first
n operand in the assembled object code above is the low
order byte of nn.

MCYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If the content of register pair HL is 483AH, after the instruc­
tion

LO (8229H), HL

address B229H) will contain 3AH, and address B22AH will
contain 48H.

LD (nn), dd
OaeDtion: (nn+1) +-ddH, (nn) +-ddl

Opcode

LD

Operands

(nn),dd

1 1: 1: 1:0: 1: 1:0: if
10: l:d:d:o:o: i: if
I : : : n: : : : I
I : : :n: : : : I

Description:

ED

The low order byte of register pair dd is loaded into memory
address nn ; the upper byte is loaded into memory address
nn+l . Register pair dd defines either BC, DE, HL, or SP,
assembled as follows in the object code:

BC
DE
HL
SP

The first n operand in the assembled object code is the low
order byte of a two byte memory address.

M CYCLES: 6 T STATES: 2fi'(4,4,3,3,3,3) 4 MHZ E.T.: 5.fi'fi'

Condition bits Affected: None

Example:

If register pair BC contains the number 4644H, the
instruction

LO (1000H),BC

will result in 44H in memory location Ifi'fi'fi'H, and 46H in
memory location Ili'01H.

28

LD (nn), IX
Operation: (nn+1) +- IXH, (nn) +- IXL

Format:

Opcode Operands

LD (nn),IX

j 1 : 1 : o : 1 : 1 : 1 : n : 1 f DD

1 o : a : 1 : a : a : a : 1 : a 1 22

I : : : n: : : : I
I : : : n : : : : I

Description:

The low order byte in Index Register IX is loaded into
memory address nn ; the upper order byte is loaded into the
next highest address nn+ 1 . The first n operand in the
assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 2()(4,4,3,3,3,3) 4 MHZ E.T.: 5J}~

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A3fi'H, after the instruc­
tion

LO (4392H) • IX

memory location 4392H will contain number 30H and
location 4393H will contain 5AH.

LD (nn), IY
Operation: (nn+1) +- IYH, (nn) +- IYL

Format:

LD

Operands

(nn),IY

1i:1:1:1:i:i:o:11 FD

1 a : a : i; o : o : o : 1 : o 1 22

I : : : < : : : I
I : : : n: : : : I

Description:

The low order byte in Index Register IY is loaded into
memory address nn ; the upper order byte is loaded into
memory location nn+ 1. The first n operand in the assembled
object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: SJ/J0

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H,IY

memory location 8838H will contain number 741-:1 and
memory location 8839H will contain 41H.

29

LD SP, HL
Operation: SP +- H L

Format:

LD

Description:

Operands

SP,HL

The contents of the register pair HL are loaded into the
Stack Pointer SP.

M CYCLES: I T STATES: 6

Condition Bits Affected: None

Example:

4 MHZ E.T.· 1.5',0

If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LO SP, IX
~Ia.Jio.!!: SP +- IX

Fomiat:

Qpcode

LD SP,IX

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 1 : 1 : 1 : 1 : 0 : 0 : 1 I F9

Description:

The two byte contents of Index Register IX are loaded into
the Stack Pointer SP.

MCYCLES: 2 T STATES:.10(4,6)

Condition Bits Affected: None

Example:

4 MHZ E.T.: 2.5(/J

If the contents of the Index Register IX are 98DAH, after
the instruction

LO SP, IX

the contents of the Stack Pointer will also be 98DAH.

30

LD SP, IY
Operation: SP +- IV

Format:

Opcode

LD

Operands

SP,JY

I 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

I 1 : 1 > > : 1 : 0 : 0 : 1 I F9

Description:

The two byte contents of Index Register IY are loaded into
the Stack Pointer SP.

MCYCLES: 2 T STATES: 1(/)(4,6) 4 MHZ E.T.: 2.5(,b

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the
instruction

LD SP, I Y

the Stack Pointer will also contain A227H.

PUSH qq
Operation: (SP-2) +- qql, (SP-1) +- qqH

Format:

Opcode

PUSH

Description:

Operands

qq

The contents of the register pair qq are pushed into the
external memory LIFO (l~st-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first decrements
the SP and loads the high order byte of register pair qq into
the memory address now specified by the SP; then decre­
ments the SP again and loads the low order byte of qq into
the memory location corresponding to this new address in
the SP. The operand qq means register pair BC, DE, HL, or
AF, assembled as follows in the object code:

Pair gg_

BC
DE
HL
AF

(/J(/J
(/Jl
1(/J
11

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Eiample:

If the AF register pair contains 2233H and the Stack Pointer
contains 1(/J(/J7H, after the instruction

PUSH AF

memory address 1(/J(/J6H will contain 22H, memory address
1(/J(/J5H will contain 33H, and the Stack Pointer will contain
1(/J(/J5H.

31

PUSH IX
Operation: (SP-2) +- IXL, (SP-1) +- IXH

Format:

Opcode

PUSH

Operands

IX

I 1 : 1 : 0 > :-1 > : 0 : 1 I DD

·11 : 1 > : 0 : 0 :i :a :i I E5

Description:

The contents of the Index Register IX are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first decrements
the SP and loads the high order byte of IX into the memory
address now specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

M CYCLES: 3 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack
Pointer contains 1(/J(/J7H, after the instruction

PUSH IX

memory address 1 (/J(/J6H will contain 22H, memory address
1(/J(/J5H will contain 33H, and the Stack Pointer will contain
1(/J(/J5H.

PUSHIY
Operation: (SP-2) +- IYL, (SP-1) +- IYH

Format:

Opcode Operands

PUSH IY

I 1 : 1 : 1 :i :i :i : 0 > I FD

11 > :i : 0 : 0 > : 0 > I E5

Description:

The contents of the Index Register IY are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first decrements
the SP and loads the high order byte of IY into the memory
address now specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

M CYCLES: 4 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack
Pointer contains 1(/J(/J7H, after the instruction

PUSH IY

memory address 1(/J(/J6H will contain 22H, memory address
l~SH will contain 33H, and the Stack Pointer will contain
1(/J(/JSH.

32

POPqq
Operation: qqH +- (SP+1), qql +- (SP)

Format:

Opcode Operands

POP qq

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into register pair qq. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first loads into
the low order portion of qq, the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of qq and the
SP is now incremented again. The operand qq defines register
pair BC, DE, HL, or AF, assembled as follows in the object
code:

BC
DE
HL
AF

(/)(/)
(/Jl
1 (/J
11

M CYCLES: 3 T STATES: 1(/)(4,3,3) 4 MHZ E.T.: 2:5</J

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1 (/J(/J(/JH, memory location
l~(/JH contains SSH, and location 1(/J(/JlH contains 33H,
the instruction

POP HL

will result in register pair HL containing 3355H, and the
Stack Pointer containing 1(/J(/J2H.

POP IX
Operation: IXH ~ (SP+1), IXL~ (SP)

Format:

Opcode Operands

POP IX

I 1 : 1 : 0 : 1 ;i ;i : 0 > I DD

11 :1 :1 :o ;o ;o :O ;i I EI

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IX. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first loads into
the low order portion of IX the byte at the memory location
corresponding to the contents of SP: then SP is incremented
and t~e contents of the corresponding adjacent memory
locat10n are loaded into the high order portion of IX. The SP
is now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.S(/J

~ondition Bits Affected: None

Example:

If the Stack Pointer contains 1 (/Jl,i)(/JH, memory location
1 (/Jl,i)l,i)H contains SSH, and location 11,i)l,i) 1 H contains 33H the
instruction '

POP IX

will result in the Index Register IX containing 33SSH, and
the Stack Pointer containing l (/J(/J2H.

33

POP IV
Operation: IYH ~ (SP+1), IYL ~ (SP)

Format:

Opcode

POP

Operands

IY

l1:i;i:1;i;i:o:1J
11:i:i:a:o:o:a:i,

FD

El

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IY. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current "top" of the Stack. This instruction first loads into
the low order portion of IY the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of IY. The
SP is now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.5(/J

Co11dition Bits Affected: None

If the Stack Pointer contains l(]l(/J~H, memory location
lv)~Q)H contains SSH, and location 10(/JlH contains 33H, the
instruction

POP IY

will result in Index Register IY containing 3355H, and the
Stack Pointer containing 1(/J~2H.

EXCHANGE, BLOCK TRANSFER
AND SEARCH GROUP

EX DE, HL
012.erati-On: DE"""' HL

Format:.

Opcode

EX DE,HL

EB

Description_:

The two-byte contents of register pairs DE and HL are
exchanged.

.M CYCLES: l T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

If the content ofregister pair DE is the number 2822H, and
the content of the register pair HL is number 499 AH,
after the instruction

EX DE,HL

the content of regiSter pair DE will be 499 AH and the
content of register pair HL will be 28221-f.

34

EX AF, AF'
Operation: AF +r AF'

Format:

Opcode Operands

EX AF,AF'

Description:

08

The two-byte contents of the register pairs AF and AF'
are exchanged. (Note: register pair AF' consists of registers
A' and F'.)

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

4 MHZ E.T.: 1.(p(p

If the content of register pair AF is number 99(p(pH, and the
content of register pair AF' is number 5944H, after the
instruction

EX AF, AF'

the contents of AF will be 5944H, and the contents of AF
will be 99(p(i)H.

EXX
Operation: (BC) • (BC'), (DE) • (DE'), (HL) • (HL')

Format:

Operands

EXX

D9

Description:

Each two-byte value in register pairs BC, DE, and HL is
exchanged with the two-byte value in BC', DE', and HL',
respectively.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1 J/Jf/J

Condition Bits Affected: None

Example:

If the contents of register pairs BC, DE, and HL are the
numbers 445AH, 3DA2H, and 8859H, respectively, and the
contents of register pairs BC', DE', and HL' are 0988H,
9300H, and 00E7H, respectively, after the instruction

EXX

the contents of the register pairs- will be as follows:
BC: 0988H; DE: 9300H: HL: 00E7H; BC': 445AH:
DE': 3DA2H; and HL': 8859H.

35

EX (SP), HL
Operation: H .,:-,. (SP+1), L -<+ (SP)

Format:

Operands

EX (SP),HL

Description:

The low order byte contained in register pair HL is
exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer),
and the high order byte of HL is exchanged with the next
highest memory address (SP+ 1).

M CYCLES: 5 T STATES: 19(4,3,4,3,5) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the HL register pair contains 7012H, the SP register pair
contains 8856H, the memory location 8856H contains the
byte 11H, and the memory location 8857H contains the
byte 22H, then the instruction

EX (SP) , HL

will result in the HL register pair containing number 2211 H,
memory location 8856H containing the byte 12H, the
memory location 8857H containing the byte 70H and the
Stack Pointer containing 8856H.

EX (SP), IX
Operation: IXH •,• (SP+1), IXL+,, {SP)

Format:

Qperands

EX (SP),IX

[~ : 1 : o : 1 : 1 : 1 : o : 1 1 DD

li'.i'.i'.o'.o:O:i'.1j E3

Description:

_The low order byte in Index Register IX is exchanged with
the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the high
order byte of IX is exchanged with the next highest memory
address (SP+l).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits AffrfJed: None

If the Index Register IX contains 3988H, the SP register pair
contains 01(,i)(l}H, the memory location (,i)l(l}QH contains the
byte 9(,i)H, and memory location 01 (i)lH contains byte 48H,
then the instruction

EX (SP),IX

will result in the IX register pair containing number 489(/}H,
memory location (pl (,i)(l}H containing SSH, memory location
(,i)Up1H containing 39H and the Stack Pointer containing
(,i)l(,i)(,i)H.

36

EX (SP), IV
OQ_eration: IYH ·• (SP+1}, IYL ,;-• (SP)

Fonnat:

EX (SP),IY

l<<<<<<o:11
11: 1: 1:0:0:0: 1: 1]

Descriptio11:

FD

E3

The low order byte in Index Register IY is exchanged with
the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the high
order byte of IY is exchanged with the next highest memory
address (SP+ 1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register
pair contains 0100H, the memory location (,i)l(,i)(,i)H contains
the byte 9(,i)H, and memory location 0H,31H contains byte
48H, then the instruction

EX (SP) , I Y

will result in the IY register pair containing number 489QH,
memory location (ftl(,i)(ftH containing SSH, memory location
(,i)l(,i)lH containing 39H, and the Stack Pointer containing
010(i)H.

LDI
Operation:
(DE)+- (HL), DE +-DE+1, HL +-HL+1, BC +-BC-1

Format:

Opcode

LDI

Operands

j1:1:i;a:1:i;a:1l ED

I 1 : 0 : 1 : a: a: a: 0 : 0 I AO

Description:

A byte of data is transferred from the memory location
addressed by the contents of the HL register pair to the
memory location addressed by the contents of the DE
register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Set if BC~-11~; reset otherwise
N: Reset
C: Not affected

Example:

If the HL register pair contains 111 lH, memory location
1111 H contains the byte 88H, the DE register pair contains
2222H, the memory location 2222H contains byte 66H, and
the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and
memory addresses:

HL
(111 lH)

DE
(2222H)

BC

1112H
88H

2223H
88H

6H

37

LDIR
Opera!!5!.l!:
(DE)+- (HL), DE,,,.... DE+1, HL +- HL+1, BC+- BC-1

OQerands_

LDIR

j1:1'.1'.o:i;i;o:1I

I 1: o: 1'. 1: a: o: o: oJ

Description:

ED

BO

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the DE
register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If
decrementing causes the BC to go to zero, the instruction is
terminated. If BC is not zero the program counter is decre­
mented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruc­
tion will loop through 64K bytes. Also, interrupts will be
recognized after each data transfer.

,, '

For BC:ffi':

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC==<p:

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4J~(p

Condition Bits Affecte<:f:

S: .Not affected
l · !'-L,r affetTed ·
H: Reset

P/V: Reset
N: Reset
C · Not affected

Example:

If the HL register pair contains 11 11 H, the DE register pair
contains 2222H, the BC register pair contains (p(p(p3H, and
memory locations have these contents:

(11 llH) 88H
(1112H) : 36H
(1113H) : ASH

then after the execution of

LDIR

(2222H)
(2223H)
(2224H)

66H
59H
CSH

38

the contents of register pairs and memory locations will be:

HL
DE
BC

I 114H
222SH
(pf./J</J(pH

(l l l lH)
(1112H)
(1113H)

88H
36H
ASH

(2222H)
(2223H)
(2224H)

88H
36H
ASH

LDD
Operation:
(DE)~ (HL), DE~ DE-1, HL ~ HL-1, BC~ BC-1

Format:

Operands

LDD

I 1'. 1: 1'.o'. 1: i;o: 1j

11:a:i:0:1:0:0:01

Description:

ED

AS

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these register
pairs including the BC (Byte Counter) register pair are
decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Set ifBC-110; reset otherwise
N: Reset
C: Not affected

Example:

If the HL register pair contains 111 lH, memory location
1111 H contains the byte 88H, the DE register pair contains
2222H, memory location 2222H contains byte 66H, and the
BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and
memory addresses:

HL
(1111H)

DE
(2222H)

BC

1110H
88H

2221H
88H

6H

39

LDDR
~!ltti!>J.l.:
(DE) +--(HL), DE---DE-1, HL +- HL-1, BC..,,_ BC-1

Oncode ..

LDDR

Operands

11:1:1:0:1:1:0:11 ED

I 1 : 0 : 1 : 1 : 1 : 0 : 0 : 0 I B8

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. TI1en both of these registers
as well as the BC (Byte Counter) are decremented. If
decrementing causes the BC to go to zero, the instruction is
terminated. If BC is not zero, the program counter is
decremented by 2 and the instruction is repeated. Note that
if BC is set to zero prior to instruction execution, the
instruction will loop through 64K bytes. Also, interrupts
will be recognized after each data transfer.

For BC:j(i):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: S.25

For BCj(i):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.(i)0

Condition Bits Affected:

S: Not affected
Z: Not affected
If: Reset

P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1114H, the DE register pair
contains 222SH, the BC register pair contains 0003H, and
memory locations have these contents:

(1114H)
(I 113H)
(1112H)

ASH
36H
88H

then after the execution of

LDDR

(2225H)
(2224H)
(2223H)

CSH
S9H
66H

the contents of register pairs and memory locations will be:

HL 1 ll IH
DE 2222H
BC 0000H

(1114H) ASH (222SH) ASH
(1113H) 36H (2224H) 36H
(1112H) 88H (2223H) 88H

40

CPI
Operation: A- (HL), HL ~ HL+1, BC ~BC-1

Format:

Opcode

CPI

Operands

11:1:1:0:1:1:0:11 ED

I 1 : 0 : 1 : 0 : 0 : 0 : 0 : 1 I Al

Description:

The contents of the memory locatJon addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is
set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented. ·

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S:
Z:
H:

P/V:
N:
C:

Example:

Set if result is negative; reset otherwise
Set if A=(HL); reset otherwise
Set ifno borrow from Bit 4; reset otherwise
Set if BC--110; reset otherwise
Set
Not affected

If the HL register pair contains 111 lH, memory location
111 lH contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains 0001 H, then after the execution
of

CPI

th_e Byte ~ounter will contain 0000H, the HL register pair
will con tam 1112H, the Z Hag in the F register will be set,
and the P/V Hag in the F register will be reset. There will be
no effect on the contents of the Accumulator or address
111 lH.

41

CPIR
Operation: A- (HL), HL ~ HL+1, BC~ BC-1

Format:

Opcode

CPIR

Operands

j1:1:1:o:i;i;o:1l

j1:o:i;i:o:o:o:1l
Description:

ED

Bl

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is
set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to
go to zero or if A=(HL), the instruction is terminated. If BC
is not zero and A1'(HL), the program counter is decremented
by 2 and the instruction is repeated. Note that if BC is set to
zero before the execution, the instruction will loop through
64K bytes, if no match is found. Also, interrupts will be
recognized after each data comparison.

For BC10 and Ai=(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=(O or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S:
Z:
H:

P/V:
N:
C:

Set if result is negative; reset otherwise
Set if A=(HL); reset otherwise
Set if no borrow from Bit 4; reset otherwise
Set if BC-1 :f(O; reset otherwise
Set
Not affected

If the HL register pair contains 1111 H, the Accumulator
contains F3H, the Byte Counter contains (O(/)(p7H, and
memory locations have these contents:

(1111 H) 52H
(1112H) (p(,!)H
(lll3II) F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H. the contents
of the Byte Counter will be <il0~)4H, the P/V flag in the F
register will be set and the Z flag in the F register will be set.

CPD
~~~tJC11~: A - (HL), HL +- HL-1, BC+- BC-1 

Format: --~---

o· code 'P ---
CPD 

Operands 

11:1:1:0:1:1:0:11 ED 

I 1: 0: 1: 0: 1: o.: 0: 1 I A9 

Description: 

The contents of the memory location addressed by the HL 
register pair is compared with the contents of the 
Accumulator. In case of a true compare, a condition bit 
is set. The HL and the Byte Counter (register pair BC) are 
decremented. 

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Set if result is negative; reset otherwise 
Set if A=(HL); reset otherwise 
Set if no borrow from Bit 4; reset otherwise 
Set if BC- I jf/J; reset otherwise 
Set 
Not affected 

If the HL register pair contains 1111 H, memory location 
111 IH contains 3BH, the Accumulator contains 3BH, and 
the Byte Counter contains f/J(/J(/Jl H, then after the execution 
of 

CPD 

the Byte Counter will contain (/Jf/Jf/Jf/JH, the HL register pair 
will contain 11 lf/JH, the Z flag in the F register will be set, 
and the P/V flag in the F register will be reset. There will be 
no effect on the contents of the Accumulator or address 
111 lH. 

42 

CPDR 
9peration: A- (HL), HL +-HL-1, BC+- BC-1 

Format: 

Operands 

CPDR 

!1'.i'.i:o'.i'.i:o'.il ED 

I 1 : 0 : 1 : 1 : 1 : 0 : 0 : 1 I B9 

Description: 

The contents of the memory location addressed by the HL 
register pair is compared with the contents of the 
Accumulator. In case of a true compare, a condition bit is 
set. The HL and BC (Byte Counter) register pairs are decre­
mented. If decrementing causes the BC to go to zero or if 
A=(HL), the instruction is terminated. If BC is not zero and 
At(HL), the program counter is decremented by 2 and the 
instruction is repeated. Note that if BC is set to zero prior to 
instruction execution, the instruction will loop through 64K 
bytes, if no match is found. Also, interrupts will be 
recognized after each data comparison. 

For BC'ff/J and M=(HL): 

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25 

For BC=f/J or A=(HL): 

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.(/J</J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if A=(HL); reset otherwise 
Set ifno borrow from Bit 4; reset otherwise 
Set if BC-1 ff/J; reset otherwise 
Set 
Not affected 

If the HL register pair contains 1118H, the Accumulator 
contains F3H, the Byte Counter contains f/Jf/Jf/J7H, and 
memory locations have these contents: 

(1118H) 52H 
(1117H) f/Jf/JH 
(I 116H) F3H 

then after the execution of 

CPDR 
the contents of register pair HL will be 111 SH, the contents 
of the Byte Counter will be f/Jf/J(/J4H, the P/V flag in the F 
register will be set, and the Z flag in the F register will be set. 



8 BIT ARITHMETIC AND LOGICAL GROUP 

ADD A, r 
Operation: A +- A + r 

Format: 

ADD 

Description: 

A,r 

The contents of register r are added to the contents of the 
Accumulator, and the result is stored in the Accumulator. 
The symbol r identifies the registers A,B,C,D,E,H or L 
assembled as follows in the object code: 

Register L 

A 
B 
C 
D 
E 
H 
L 

111 
(/J(/J(/J 
(/J(/Jl 
(/Jl(/J 
(/J 11 
I (/J(/J 
1 (/JI 

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.(/J(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherwise 
Set if overflow; reset otherwise 
Reset 
Set if carry from Bit 7; reset otherwise 

If the contents of the Accumulator are 44H, and the 
contents of register Care 11 H, after the execution of 

ADD A,C 

the contents of the Accumulator will be 55H. 

43 

ADD A, n 
Operation: A +- A + n 

Format: 

ADD 

Operands 

A,n 

li'.i'.o:o:o:i;i:ol 
I : : : n : : : : I 

Description: 

C6 

The integer n is added to the contents of the Accumulator 
and the results are stored in the Accumulator. 

MCYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: l.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 

P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the contents of the Accumulator are 23H, after the 
execution of 

ADD A,33H 

the contents of the Accumulator will be 56H. 



ADD A, (HL) 
Operation: A+-- A+ (HL) 

ADD A,(HL) 

1 1 : o : o : o : o : 1 : 1 : a 1 86 

Description: 

The byte at the memory address specified by the contents 
of the HL register pair is added to the contents of the 
Accumulator and the result is stored in the Accumulator. 

MCYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: l .75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherwise 
Set if overflow; reset otherwise 
Reset 
Set if carry from Bit 7; reset otherwise 

If the contents of the Accumulator are A(i}H, and the content 
of the register pair HL is 2323H, and memory location 
2323H contains byte 08H, after the execution of 

ADD A,(HL) 

the Accumulator will contain A8H. 

44 

ADD A, (IX+d) 
Operation: A+-- A+ (IX+d) 

Format: 

Operands 

ADD A,(IX+d) 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

1 1 : o : o : a : a : 1 : 1 : a 1 86 

I : : : d : : : : I 
Description: 

The contents of the Index Register (register pair IX) is 
added to a displacement d to point to an address in memory. 
The contents of this address is then added to the contents 
of the Accumulator and the result is stored in the 
Accumulator. 

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherwise 
Set if overflow; reset otherwise 
Reset 
Set if carry from Bit 7; reset otherwise 

If the Accumulator contents are l lH, the Index Register IX 
contains 1000H, and if the content of memory location 
1005H is 22H, after the execution of 

ADD A,(IX+5H) 

the contents of the Accumulator will be 33H. 



ADD A, (IV +d) 
Operation: A~ A+(IY+d) 

Fonnat: 

Opcode 

ADD 

Operands 

A,(IY+d) 

I 1 :i > > > > : 0 > I FD 

1 1 :a : a :a : a :i > :a 1 86 

I : : : d : : : : I 
Description: 

The contents of the Index Register (register pair IY) is added 
to the displacement d to point to an address in memory. The 
contents of this address is then added to the contents of the 
Accumulator and the result is stored in the Accumulator. 

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 

P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the Accumulator contents are 1 lH, the Index Register 
pair IY contains 1000H, and if the content of memory 
location 1005H is 22H, after the execution of 

AO D A , ( I Y + 5 H ) 

the contents of the Accumulator will be 33H. 

45 



ADC A, s 

Q_perands 

ADC A,s 

The s operand is any of r,n,(HL),(IX+d) or (lY+d) as defined 
for the analogous ADD instruction. These various possible 
opcode-operand combinations are assembled as follows in the 
object code: 

ADC A,r I 1 : 0 :0 : 0 > ~r*:-1 
ADC A,n I 1 > :0 :0 > > '.i :a I CE 

I : : '.n : : : : I 
ADC A,(HL) I 1 : 0 : 0 : 0 : 1 : 1 : 1 : 0 I BE 

ADC A,(IX+d) I 1 : 1 : O : 1 : 1 : 1 : 0 : 1 I DD 

I 1 : 0 : 0 : 0 > : 1 : 1 : 0 I BE 

I : : : d : : : : I 
ADC A,(IY+d) I 1 > > > > > :a > I FD 

I 1 :a : 0 :a > > > :a I BE 

l : : : d : : : : I 
*r identifies registers B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

Register r_ 

B ~(/J 
C (/J(/Jl 
D (/Jl(/J 
E (/Jl 1 
H 1(/J(/J 
L 1(/Jl 
A 111 

46 

Description: 

The s operand, along with the Carry Flag ("C" in the F 
register) is added to the contents of the Accumulator, and 
the result is stored in the Accumulator. 

M 4MHZ 
INSTRUCTION CYCLES TSTATES li_ 

ADC A,r l 4 1.00 
ADC A,n 2 7(4,3) 1.75 
ADC A,(HL) 2 7(4,3) 1.75 
ADC A,(IX+d) 5 19(4,4,3,5 ,3) 4.75 
ADC A,(IY+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 

P/V: Set if overflow; reset othetwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the Accumulator contains 16H, the Carry Flag is set, the 
HL register pair contains 6666H, and address 6666H contains 
10H, after the execution of 

ADC A,(HL) 

the Accumulator will contain 27H. 



SUB s 
Operation: A+- A - s 

Format: 

SUB 

Operands 

s 

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined 
for the analogous ADD instruction. These various possible 
opcode-operand combinations are assembled as follows in 
the object code: 

SUBr I i: 0: 0: i: 0 ~ r+-1 
SUB n I 1 : 1 : 0 : 1 >< 1 : 1 : 0 I 06 

I : : : n : : : : I 
SUB (HL) I 1 : 0 : 0 : 1 : O : 1 : 1 : 0 I 96 

SUB(IX+d) I 1 > : 0 > > > : 0 > I DD 

j1;0:o;i:o:i:i:ol 96 

I : : >: : : : I 
mB (IY+d) j 1 > > '.1 > > :0 '.i I FD 

j1;o:a;i;a;i;i;o196 

I : . : > : : : : I 
'r identifies registers B,C,D,E,H,L or A assembled as follows 
n the object code field above: 

B 01/Ji/J 
C 01/Jl 
D 1/Jli/J 
E 1/Jl 1 
H 11/Jlp 
L 11/Jl 
A l ll 

47 

Description: 

The s operand is subtracted from the contents of the 
Accumulator, and the result is stored in the Accumulator. 

M 4MHZ 
INSTRUCTION CYCLES T STATES U,_ 

SUB r I 4 1.00 
SUBn 2 7(4,3) 1.75 
SUB (HL) 2 7(4,3) l.75 
SUB (IX+d) 5 19(4,4,3,5,3) 4.75 
SUB (IY+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if no borrow from Bit 4; reset otherwise 

P/V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

Example: 

If the Accumulator contains 29H and register D contains 
11 H, after the execution of 

SUB D 

the Accumulator will contain 18H. 



SBC A, s 
Operation: A +- A - s - CY 

Fomlat: 

9J>£gd_e Operands 

SBC A,s 

The s operand is any of r ,n,(lfL),(lX +d) or (JY +cl) as defined 
for the analogous ADD instructions. TI1ese various possible 
opcode-operand combinations are assembled as follows in 
the object code: 

SBCA,r I 1: 0: 0 > :i ~r~I 
SBC A,n I 1 > : 0 ;i ;i > :i : 0 I DE 

I : : >: : : : I 
SBC A,(HL) 11 : 0 : 0 > > > > :0 I 9E 

SBC A,(IX+d) I 1 > :a > > > : 0 > I DD 

I 1 : 0 : 0 > > > > :a I 9E 

I : : >: : : : I 
SBCA,(IY+d) 11 > > > > > :o > I FD 

11 : 0 : 0 : 1 : 1 : 1 : 1 : 0 I 9E 

I : : : d : : : : I 
*r identifies registers B,C,D,EJI,L or A assembled as follows 
in the object code field above: 

Register r 

B f/Jf/Jf/J 
C f/Jf/Jl 
D f/Jlf/J 
E f/Jl l 
H lf/Jf/J 
L lf/Jl 
A 111 

48 

Description 
The s operand, along with the Carry Flag ("C" in the F 
register) is subtracted from the contents of the Accumulator 
and the result is stored in the Accumulator. ' 

M 4MHZ 
!NSTRUCTION CYCLES T STA_TES !bL_ 

SBC A,r 4 l.f/Jf/J 
SBC A,n 2 7(4,3) 1.75 
SBC A,(HL) ,., 

7(4,3) 1.75 ;;, 

SBC A,(IX+d) 5 19( 4,4,3 ,5 ,3) 4.75 
SBC A,(JY+d) 5 19(4,4,3 ,5 ,3) 4.75 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero: reset otherwise 
H: Set ifno borrow from Bit 4; reset otherwise 

P /V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

l f the Accumulator contains 16H, the Carry Flag is set, the 
HL register pair contains 3433H, and address 3433H contains 
f/J5H, after the execution of 

SBC A, ( HL) 

the Accumulator will contain l(pH. 



AND s 
Operation: A+- A A s 

Format: 

AND 

Operands 

s 

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined 
for the analogous ADD instructions. These various possible 
opcode-operand combinations are assembled as follows in the 
object code : 

ANDr 

ANDn 

AND(HL) 

AND(IX+d) 

AND(IY+d) 

l 1 : a : 1 : a : a ~ r ~I 
1 1 : 1 : 1 : a : a : 1 : 1 : o 1 

I : : : n : : : : I 
1 1 : a : 1 : a : a : 1 : 1 : a 1 

1 1 : 1 : a : 1 : 1 : 1 : a : 1 1 

1 1 : a : 1 : a : a : 1 : 1 : a 1 

I : : : d : : : : I 
1 1 : 1 : 1 : 1 : 1 : 1 : a : 1 1 

11 :.a: 1: a: a: 1: 1: a I 
I : : : d : : : : I 

E6 

A6 

DD 

A6 

FD 

A6 

*r identifies register B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

Register !... 

B (/J(/J(/J 
C (/J(/Jl 
D (/Jl(/J 
E (/Jll 
H 1(/J(/J 
L 1(/Jl 
A 111 

49 

Description: 

A logical AND operation, Bit by Bit, is performed between 
the byte specified by the s operand and the byte contained in 
the Accumulator; the result is stored in the Accumulator. 

M 4MHZ 
INSTRUCTION CYCLES TSTATES ~ 

ANDr 1 4 1.(/J(/J 
ANDn 2 7(4,3) 1.75 
AND(HL) 2 7(4,3) 1.75 
AND(IX+d) 5 19(4,4,3,5,3) 4.75 
AND{IX+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set 

P /V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Example: 

If the B register contains 7BH ((/J 1111 (/J 11) and the Accumu­
lator contains C3H {11(/J(/J(/J(/Jl 1) after the execution of 

AND 8 

the Accumulator will contain 43H {(/Jl(/J(/J(/J(,H 1). 

1 ' 



OR s 
Oper.ition: A+- AV s 

Fonnat: .. 

Op<:ode_ 

OR 

Operands 

s 

The s operand is any ofr,n,(HL),(IX+d) or (IY+d), as defined 
for ti1c analogous ADD instructions. These various possible 
opcode-operand combinations are assembled as follows in 
tlle object code: 

OR r I 1 : 0 : 1 : 1 : 0 ~ r ~I 
OR n I l : 1 : 1 : 1 : 0 : 1 : 1 : 0 I F6 

I . : : : n : : : : I 
OR (HL) I 1 : 0 : 1 : l : 0 : 1 : 1 : 0 I 86 

OR (IX+d) 11 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

11 : 0 : 1 > : 0 > : 1 : 0 I B6 

I : : : d : : : : I 
OR (IY +d) j 1 : l : 1 : 1 : 1 : 1 : 0 : 1 I FD 

1 1 : o: i: 1 : a : 1 : i: a 1 86 

I : : : d : : : : I 
*r identifies register B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

B (/)(/)(/) 
C (/)(/)1 
D (/)Hp 
E 011 
H l(p(p 
L l(pl 
A 111 

50 

Description: 

A logical OR operation, Bit by Bit, is performed between the 
byte specified by the s operand and the byte contained in 
the Accumulator; the result is stored in the Accumulator. 

M 4MHZ 
INSTRUCTION CYCLES T STATES rr__ 

ORr 1 4 1.00 
ORn 2 7(4,3) 1.75 
OR(HL) 2 7(4,3) 1.75 
OR (IX+d) 5 19(4,4,3,5,3) 4.75 
OR(IY+d) 5 19( 4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set 

P/V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Example: 

If the H register contains 48H ((/)l(p(p(pl(/J(/J(p) and the 
Accumulator contains l 2lf ((/)(/)(/)1 (/)(/)1 Ip) after the execution 
of 

OR H 

the Accumulator will contain 5AH ((/)l(pl l(pl(p). 



XOR s 
Operation: A +- A EB s 

Format: 

Opcode 

XOR 

Operands 

s 

The s operand is any ofr,n, (HL),(IX+d) or (IY+d), as 
defined for the analogous ADD instructions. These various 
possible opcode-operand combinations are assembled as 
follows in the object code: 

XORr 1 1 : a: 1 : a : 1 ~ r ~I 
XORn I 1 : 1 : 1 : 0 : 1 : 1 : 1 : 0 I EE 

I : : : n : : : : I 
XOR (HL) I 1 : 0 : 1 : 0 : 1 : 1 : 1 : 0 I AE 

XOR (IX+d) j 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

I < 0 : i: 0 : i: i: i: 0 I AE 

I : : : d: : : : I 
XOR (IY+d) I i'. < < < i: i: 0 : 1 I FD 

I i: 0 : i: a: i: i: i: 0 I AE 
• 

I : : : < : : : I 
*r identifies registers B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

Re&ister r.. 

B </J</J</J 
C </J</Jl 
D </Jl</J 
E </Jll 
H 1(/J</J 
L 1(/Jl 
A 111 

51 

Description: 

A logical exclusive-OR operation, bit by bit, is performed 
between the byte specified by the s operand and the byte 
contained in the Accumulator; the result is stored in the 
Accumulator. 

M 4MHZ 
INSTRUCTION CYCLES TSTATES E.T. 

XORr 1 4 l.</J</J 
XORn 2 7(4,3) 1.75 
XOR(HL) 2 7(4,3) 1.75 
XOR{IX+d) 5 19(4,4,3,5,3) 4.75 
XOR(IY+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set ifresult is zero; reset otherwise 
H: Set 

P /V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Example: 

If the Accumulator contains 96H (I </J</J 1 </J 11 </J), after the 
execution of 

XOR 5DH (Note: 5DH =\H</Jlll</Jl) 

the Accumulator will contain CBH (11(/J(/Jl(/Jl 1). 



CP s 

CP s 

The s operand is any of r,n,(HL),(IX+d) or (fY+d), as defined 
for the analogous ADD instructions. These various possible 
opcode-operand combinations are assembled as follows in 
the object code: 

CPr I< a; i: i: i:~r~I 
CP n [ < i; i; i: < < < 0 I FE 

I : : : < : : : I 
CP (HL) I 1 : 0 : 1 : 1 : 1 : 1 : 1 : 0 I BE 

CP (I X·rd) I i; i; 0: i; i: i: 0 : 1 I DD 

I i; 0: i; i; < i: i: 0 I BE 

I : : : < : : : I 
CP (IY+d) I < 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD 

I < 0: < i; i: < i: 0 I BE 

I ~ : : d : : : : I 
*r identifies registers B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

B f/J(/J(/J 
C (/J(/Jl 
D (/Jl(/J 
E (/Jl 1 
H 1(/J(/J 
L l(/Jl 
A 111 

52 

Descrj_ption: 

'Dic contents of the s operand are compared with the 
contents of the Accumulator. lf there is a true compare, a 
Hag is set. 

M 4MHZ 
INSTRUCTION CYCLES T STATES !:'.-T:...._ 

CP r 4 1.(/J(/J 
CPn 2 7(4,3) 1.75 
CP(HL) 

,.., 
7(4,3) l.75 ,:., 

CP (IX+d) 5 19( 4,4,3,5,3) 4.75 
CP (IY+d) 5 19( 4,4,3 ,5 ,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set ifno borrow from Bit 4; reset otherwise 

P/V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

Example: 

If the Accumulator contains 63 H, the HL register pair 
contains 6000H and memory location 6(/J(/J(/JH contains 6(/JH, 
the instruction 

CP (HL) 

will result in the P/V Hag in the F register being reset. 



INC r 
Operation: r +- r + 1 

Format: 

Opcode 

INC 

Description: 

Operands 

r 

Register r is incremented. r identifies any of the registers 
A,B, C,D,E,H or L, assembled as follows in the object code. 

Register !.. 

A 111 
B (/J(/J(/J 
C (/J(/Jl 
D (/Jl(/J 
E (/Jll 
H 1(/J(/J 
L 1(/Jl 

M CYCLES: 1 T STATES: 4 4MHZE.T.: 1.(/J(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 

N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherw1se 
Set if r was 7FH before operation; reset 
otherwise 
Reset 
Not affected 

If the contents of register D are 28H, after the execution of 

INC D 

the contents of register D will be 29H. 

53 

INC (HL) 
Operation: (HL) +- (HL)+1 

Format: 

Opcode Operands 

INC (HL) 

Description: 

The byte contained in the address specified by the contents 
of the HL register pair is incremented. 

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 

P/V: Set if (HL) was 7FH before operation; reset 
otherwise 

N: Reset 
C: Not Affected 

Example: 

If the contents of the HL register pair are 3434H, and the 
contents of address 3434H are 82H, after the execution of 

I NC C HL) 

memory location 3434H will contain 83H. 



INC (IX+d) 
Operation: (IX+d) ...... (IX+d)+1 

Format: 

INC (IX+d) 

I 1 '.1 : o '.1 '.1 : 1 : o : 1 I on 

1 o :a :i :i :a > : o : o 1 34 

I : : > : : : : I 
Description: 

The contents of the Index Register IX (register pair IX) are 
added to a two's complement displacement integer d to point 
to an address in memory. The contents of this address are 
then incremented. 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 

N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherwise 
Set if (IX+d) was 7FH before operation; reset 
otherwise 
Reset 
Not affected 

If the contents of the Index Register pair IX are 202\0H, and 
the memory location 2\33(0H contains byte 34H, after the 
execution of 

INC (IX+10H) 

the contents of memory location 2(03(0H will be 35H. 

54 

INC (IY+d) 
Operation: (IV +d) +- (I V +d )+ 1 

Format: 

Op~ode. 

INC 

Qperands 

(IY+d) 

11:1:i:i:i:i:a:i1 FD 

1 o : o : 1 : 1 : o : 1 : o : o 1 34 

I : : : d : : : : I 

The contents of the Index Register IY (register pair IY) are 
added to a two's complement displacement integer d to point 
to an address in memory. The contents of this address are 
then incremented. 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 

N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set if carry from Bit 3; reset otherwise 
Set if (IY+d) was 7FH before operation; reset 
otherwise 
Reset 
Not Affected 

If the contents of the Index Register pair IY are 2020H, and 
the memory location 2030H contain byte 34H, after the 
execution of 

INC (IY+10H) 

the contents of memory location 2030H will be 3 SH. 



DEC m 
Operation: m +- m-1 

Format: 

Opcode 

DEC 

Operands 

m 

Them operand is any of r, (HL),(IX+d) or (IY+d), as defined 
for the analogous INC instructions. These various possible 
opcode-operand combinations are assembled as follows in the 
object code: 

DECr jo:o~r~1:o:11 
DEC (HL) I O : 0 : 1 : 1 : 0 : 1 : 0 : 1 I 35 

DEC (IX+d) 1 1 > : 0 > > > : 0 > I ~D 

1 o :a :i :i :a :i :a > 1 35 

I : : >: : : : I 
DEC (IY+d) I 1 > > > > > :a > I FD 

1 o : a :i :i :a > : o > 1 35 

I : : >: : : : I 
*r identifies register B,C,D,E,H,L or A assembled as follows 
in the object code field above: 

Register t.. 

B f/J(f,0 
C '/J'/Jl 
D '/Jl'/J 
E '/Jll 
H 1</,0 
L l'/Jl 
A 111 

Description: 

The byte specified by them operand is decremented. 

55 

M 4MHZ 
INSTRUCTION CYCLES TSTATES E.T. 

DECr 1 4 l.'/J'/J 
DEC (HL) 3 11(4,4,3) 2.75 
DEC (IX+d) 6 23 (4,4,3,5,4,3) 5.75 
DEC(IY+d) 6 23(4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: s·et if no borrow from Bit 4; reset otherwise 

P /V: Set if m was 8'/JH before operation; reset other­
wise 

N: Set 
C: Not affected 

Example: 

If the D register contains byte 2AH, after the execution of 

DEC D 

register D will contain 29H. 



GENERAL PURPOSE ARITHMETIC 
AND CPU CONTROL GROUPS 

DAA 
Operation: 

Format: 

Opcode 

DAA 

Description: 

27 

This instruction conditionally adjusts the Accumulator for 
BCD addition and subtraction operations. For addition 
(ADD, ADC, INC) or subtraction (SUB, SBC,DEC,NEG), 
the following table indicates operation performed: 

HEX HEX NUM-
C VALUE H VALUE BER C 

OPERA- BE- IN BE-. IN ADD- AFT-
TION FORE UPPER FORE LOWER ED ER 

DAA DIGIT DAA DIGIT TO DAA 
(bit (bit BYTE 
7-4) 3-0) 

"' 
(/J-9 

"' 
</,-9 

"'"' "' "' 
(/J-8 

"' 
A-F </,6 

"' 
"' 

</,-9 1 (/J-3 </,6 

"' ADD 
"' 

A-F 
"' 

(/J-9 6(/J 1 
ADC 

"' 
9-F 

"' 
A-F 66 1 

INC 
"' 

A-F 1 (/J-3 66 1 
1 (/J-2 

"' 
(/)-9 6(/) 1 

1 (/J-2 

"' 
A-F 66 1 

1 (/J----3 1 (/)-3 66 1 

SUB 
"' 

(/)-9 

"' 
(/J-9 

"'"' "' SBC 
"' 

(/)-8 1 6-F FA 
"' DEC 1 7-F 

"' 
(/)-9 A(/J 1 

NEG 1 6-F 1 6-F 9A 1 

MCYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.(/)(/J 

Condition Bits Affected: 

S: Set if most significant bit of Ace, is 1 after 
operation; reset otherwise 

Z: Set if Acc. is zero after operation; reset otherwise 
H: See instruction 

P/V: Set if Acc. is even parity after operation; reset 
otherwise 

N: Not affected 
C: See instruction 

56 

Example: 

If an addition operation is performed between 15 (BCD) and 
27 (BCD), simple decimal arithmetic gives this result: 

15 
ill 
42 

But when the binary representations are added in the 
Accumulator according to standard binary arithmetic, 

3C 

the sutn is ambiguous. The DAA instruction adjusts this 
result so that the correct BCD representation is obtained: 

11(/J(/J 
illi 
(/J(/Jl</, = 42 



CPL 
Operation: A~ A 

Format: 

Opcode 

CPL 

Description: 

2F 

Contents of the Accumulator (register A) are inverted 
(I's complement). 

M CYCLES: I T STATES: 4 4 MHZ E.T.: 1 .(/J(/J 

Condition Bits Affected: 

·s: Not affected 
Z: Not affected 
H: Set 

P/V: Not affected 
N: Set 
C: Not affected 

Example: 

If the contents of the Accumulator are 1(/Jl I (/Jl(/J(/J, after the 
execution of 

CPL 

the Accumulator contents will be (/Jl(/J(/J 1(/Jl l. 

57 

NEG 
Operation: A~ o-A 

Format: 

Opcode 

NEG 

l<<<a:1:i:0:11 
1 a : 1 : a : a : a : 1 : a : a 1 

Description: 

ED 

44 

Contents of the Accumulator are negated (two's comple­
ment). This is the same as subtracting the contents of the 
Accumulator from zero. Note that 8(/JH is left unchanged. 

MCYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.(/J(/J 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if no borrow from Bit 4; reset otherwise 

P/V: Set if Acc. was 8(/JH before operation; reset 
otherwise 

N: Set 
C: Set if Acc. was not (/J~H before operation; reset 

otherwise 

Example: 

If the contents of the Accumulator are 

after the execution of 

NEG 

the Accumulator contents will be 

0 1 1 1 o I 1 I o a a 



CCF 

Format: 

Opcode 

CCF 

Description: 

The C flag in the F register is inverted. 

M CYCLES: l T STATES: 4 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Previous carry will be copied 

P/V: Not affected 
N: Reset 

4 MHZ E.T.: l.(p(p 

C: Set if CY was (/J before operation; reset 
otherwise 

58 

SCF 
Operation: CY +-1 

Format: 

Opcode 

SCP 

Description: 

The C flag in the F register is set. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 

P/V: Not affected 
N: Reset 
C: Set 

4 MHZ E.T.: 1.(/J(/J 



ROTATE AND SHIFT GROUP 

RLCA 
Operation: 

Format: 

Opcode 

RLCA 

Description: 

&a 
A 

Operands_ 

The contents of the Accumulator (register A) are rotated 
left: the content of bit (/J is moved to the bit 1; the previous 
content of bit 1 is moved to bit 2; this pattern is continued 
throughout the register. The content of bit 7 is copied into 
the Carry Flag (C flag in register F) and also into bit (/J. (Bit 
(/J is the least significant bit.) 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 

C: Data from Bit 7 of Acc. 

If the contents of the Accumulator are 

7 6 5 4 3 2 1 0 

1 0 I O I O I l I O I O I 0 

after the execution of 

RLCA 

4 MHZ E.T.: 1 J/JfJ 

the contents of the Accumulator and Carry Flag will be 

C 7 6 5 4 3 2 1 0 

~! o I o I o 11 1 o I o I o 11 1 

69 

RLA 
Operation: 

Format: 

Operands 

RLA 

17 

Description: 

The contents of the Accumulator ( register A) are rotated 
left: the content of bit (/J is copied into bit 1 ; the previous 
content of bit 1 is copied into bit 2; this pattern is continued 
throughout the register. The content of bit 7 is copied into 
the Carry Flag (C flag in register F) and the previous content 
of the Carry Flag is copied into bit (/J. Bit (/J is the least 
significant bit. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 
Data from Bit 7 of Acc. 

4 MHZ E.T.: 1.(/J(/J 

lf the contents of the Accumulator and the Carry Flag are 

C 7 6 5 4 3 2 1 0 
• 

GI o J 1 11 J 1 1 o J 1 11 1 o 1 

after the execution of 

RLA 

the contents of the Accumulator and the Carry Flag will be 

C 7 6 5 4 3 2 1 0 

GI 1 J 1 1 1 o I 1 I 1 I o 1 



DI 

Format: 

DI 

DI disables the maskable interrupt by resetting the interrupt 
enable flip-flops(IFFl and IFF2). Note that this instruction 
disables the maskable interrupt during its execution. 

M CYCLES: I T STATES: 4 

Condition Bits Affected: None 

Example: 

When the CPU executes the instruction 

DI 

4 MHZ E.T.: 1 .Cp(/J 

the maskable interrupt is disabled until it is subsequently 
re-enabled by an EI instruction. The CPU will not respond to 
an Interrupt Request (INT) signal. 

60 

El 
Operation: I FF ..- 1 

Format: 

EI 

Description: 

EI enables the maskable interrupt by setting the interrupt 
enable flip-flops(IFFI and IFF2). Note that this instruction 
disables the maskable interrupt during its execution. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: None 

Example: 

When the CPU executes instruction 

EI 

4 MHZ E.T.: 1.(/Jq) 

the maskable interrupt is enabled. The CPU will now respond 
to an Interrupt Request (INT) signal. 



IM 0 
Operation: 

Fonnat: 

Opcode Operands 

11:i:i:a:i:i:0>1 
jo '.1 :a :O :O > '.1 :O I 

Description: 

ED 

46 

The IM </J instruction sets interrupt mode (/J.ln this mode the 
interrupting device can insert any instruction on the data bus 
and allow the CPU to execute it. 

MCYCLES: 2 T STATES: 8(4,4) .4 MHZ E.T.: 2.(/J</J 

Condition Bits Affected: None 

61 

IM 1 
Operation: 

Format: 

Opcode 

IM 

Operands 

1 

j1 '.1 '.1 :a '.1 '.1 :a '.1 I 
1 a : 1 : a : 1 : a : 1 : 1 : a 1 

Description: 

ED 

56 

The IM instruction sets interrupt mode 1. In this mode the 
processor will respond to an interrupt by executing a restart 
to location </J</J38H. 

MCYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.(/J</J 

Condition Bits Affected: None 



IM 2 
Operation: 

Fonnat: 

Opcode 

IM 

Operands 

2 

I 1 : 1 : 1 : 0 > : 1 : 0 : 1 I ED 

I O : 1 : 0 > > > > : 0 I SE 

Description: 

The IM 2 instruction sets interrupt mode 2. This mode allows 
an indirect call to any location in memory. With this mode 
the CPU forms a 16-bit memory address. The upper eight bits 
are the contents of the Interrupt Vector Register I and the 
lower e1ght bits are supplied by the interrupting device. 

MCYCLES: 2 T STATES: 8(4,4) 4MHZE.T.: 2.(/J(/J 

Condition Bits Affected: None 

62 



16 BIT ARITHMETIC GROUP 

ADD HL, ss 
Operation: H L +- H L +ss 

Format: 

Opcode Operands 

ADD HL,ss 

Description: 

The contents of register pair ss (any of register pairs BC,DE, 
HL or SP) are added to the contents of register pair HL and 
the result is stored in HL. Operand ss is specified as follows 
in the assembled object code. 

Register 
Pair ss 

BC (/J(/J 
DE (/Jl 
HL 1(/J 
SP 11 

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Set if carry out of Bit 11; reset otherwise 

P/V: Not affected 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If register pair HL contains the integer 4242H and register 
pair DE contains 1111 H, after the execution of 

ADD HL,DE 

the HL register pair will contain 5353H. 

63 

ADC HL, ss 
Operation: H L +- H L +ss+C Y 

Format: 

Operands 

ADC HL,ss 

1i:1:i:a:i:i:o:11 
jo:1:s:s:1:0:1:01 

Description: 

ED 

The contents of register pair ss (any of register pairs BC,DE, 
HL or SP) are added with the Carry Flag (C flag in the F 
register) to the contents of register pair HL, and the result 
is stored in HL. Operand ss is specified as follows in the 
assembled object code. 

Register 
Pair ss 

BC (/J(/J 
DE (/Jl 
HL 1(/J 
SP 11 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry out of Bit 11; reset otherwise 

P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If the register pair BC contains 2222H, register pair HL 
contains 5437H and the Carry Flag is set, after the execution 
of 

ADC HL,BC 

the contents of HL will be 765AH. 



SBC HL, ss 
Operation: H L +- H L-ss-CY 

Fonnat: 

Operands 

SBC HL,ss 

11:1:1:0:1:1:0:1 1 
1 o : 1 : s : s : o : o : 1 : o 1 

Description: 

ED 

The contents of the register pair ss ( any of register pairs 
BC,DE,HL or S_P) and the Carry Flag (C flag in the F register) 
are subtracted from the cq_ntents of register pair HL and the 
result is stored in HL. Operand ss is specified as follows in 
the assembled object code. 

Register 
Pair ~ 

BC (/J(/J 
DE (/J(/J 
HL 1(/J 
SP 11 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Set ifno borrow from Bit 12; reset otherwise 
Set if overflow; reset otherwise 
Set 
Set if borrow; reset otherwise 

If the contents of the HL register pair are 9999H, the 
contents of register pair DE are 111 lH, and the Carry Flag 
is set, after the execution of 

SBC HL,DE 

the contents of HL will be 8887H. 

64 

ADD IX, pp 
Operation: IX+- IX+ pp 

Fonnat: 

ADD 

Operands 

IX,pp 

11:1:0:1:1:1:0:11 
1 a : o : p : p : 1 : o : o : 1 1 

Description: 

DD 

The contents of register pair pp (any of register pairs BC,DE, 
IX or SP) are added to the contents of the Index Register 
IX, and the results are stored in IX. Operand pp is specified 
as follows in the assembled object code. 

Register 
Pair pp_ 

BC (/J(/J 
DE (/Jl 
IX 1(/J 
SP 11 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Set if carry out of Bit 11 ; reset otherwise 
Not affected 
Reset 
Set if carry from Bit 15; reset otherwise 

If the contents of Index Register IX are 333H and the 
contents of register pair BC are 5555H, after the execution 
of 

ADD IX,BC 

the contents of IX will be 8888H. 



ADD IV, rr 
Operation: IV+- IY+rr 

Format: 

Opcode_ 

ADD 

Operands 

IY,rr 

f 1:1:1:1:1:1:0:11 

I O : 0 : r : r : 1 : 0 : 0 : 1 I 
Description: 

FD 

The contents of register pair rr (any of register pairs BC,DE, 
JY or SP) are added to the contents of Index Register IY, 
and the result is stored in IY. Operand rr is specified as 
follows in the assembled object code. 

Register 
Pair !!.__ 

BC 
DE 
IY 
SP 

(/J(/J 
(/JI 
1(/J 
11 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Set if carry out of Bit 11; reset otherwise 
Not affected 
Reset 
Set if carry from Bit 15, reset otherwise 

If the contents of Index Register IY are 333H and the 
contents of register pair BC are 555H, after the execution of 

ADD IY,BC 

the contents of IY will be 8888H. 

65 

INC ss 
Operation: ss +- ss + 1 

Format: 

Opcodes 

INC 

Operands 

ss 

1 a : a : s : s : o : a : 1 : 1 1 

Description: 

The contents of register pair ss (any of register pairs BC, 
DE,HL or SP) are incremented. Operand ss is specified as 
follows in the assembled object code. 

Register 
Pair ~ 

BC (/J(/J 
DE (/JI 
HL I(i) 
SP 11 

M CYCLES: 1 T STATES: 6 4 MHZ E.T. 1.5(/J 

Condition Bits Affected: None 

Example: 

If the register pair contains l(Jl(/J(pH, after the execution of 

INC HL 

HL will contain 1(/J(/JlH. 



INC IX 
Operation: JX ~ IX+ 1 

Format: 

Opcode Operands 

INC IX 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

1 a : a : 1 : a : a : a : 1 : 1 1 23 

Description: 

The contents of the Index Register IX are incremented. 

MCYCLES: 2 T STATES: 10(4,6) 

Condltion Bits Affected: None 

Example: 

4 MHZ E.T.: 2.5'» 

If the Index Register IX contains the integer 3300H after 
the execution of 

INC IX 

the contents of Index Register IX will be 3301H. 

66 

INC IV 
Operation: IV ~ IV + 1 

Format: 

Opcode Operands 

INC IY 

1i:i:i:i:i:i:o:11 FD 

t a : a : i; a: a: a : i: 1 1 23 

Description: 

The contents of the Index Register IY are incremented. 

MCYCLES: 2 T STATES: 10(4,6) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 2.5~ 

If the contents of the Index Register are 2977H, after the 
execution of 

INC IY 

the contents of Index Register IY will be 2978H. 



DEC ss 
Operation: ss +- ss -1 

Format: 

Opcode 

DEC 

Description: 

Operands 

ss 

The contents of register pair ss (any of the register pairs 
BC,DE,HL or SP) are decremented. Operand ss is specified 
as follows in the assembled object code. 

Pair 

BC 
DE 
HL 
SP 

MCYCLES: 1 T STATES: 6 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 1.5</J 

If register pair HL contains 1 </J</J 1 H, after the execution of 

DEC HL 

the contents of HL will be· 1(/J(/J~H. 

67 

DECIX 
Operation: IX+- IX -1 

Format: 

Opcode 

DEC 

Operands 

IX 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I OD 

I O : 0 : 1 : 0 : 1 : 0 : 1 : 1 I 2B 

Description: 

The contents of Index Register IX are decremented. 

MCYCLES: 2 T STATES: l</J{4,6) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 2.5(/J 

If the contents of Index Register IX are 2</J</J6H, after-the 
execution of 

DEC IX 

the contents of Index Register IX will be 2(/J</JSH. 



DECIY 
O_pe..rati.on; I Y +-· I Y -1 

Format: 

Operands 

DEC IY 

1i;i;i;i;i;i;o;11 
1 o·: o: 1: o: 1: o: 1: 1 1 

Descril!tion: 

FD 

28 

The contents of the Index Register IY are decremented. 

M CYCLES: 2 T STATES: 10 (4,6) 4 MHZ ET.: 2,5~ 

Condition Bits Affected: None 

Example: 

If the contents of the Index Register IY are 7649H, after 
the execution of 

DEC IY 

the contents of Index Register IY will be 7648H. 

68 



ROTATE AND SHIItl· GROUP 

RLCA 
Operation: 

Format: 

Opcode 

RLCA 

Description: 

&e 
A 

Operands 

The contents of the Accumulator (register A) are rotated 
left: the content of bit (/J is moved to the bit 1; the previous 
content of bit 1 is moved to bit 2; this pattern is continued 
throughout the register. The content of bit 7 is copied into 
the Carry Flag (C flag in register F) and also into bit (/J. (Bit 
'/J is the least significant bit.) 

MCYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 
Data from Bit 7 of Acc. 

If the contents of the Accumulator are 

7 6 5 4 3 2 1 0 

1 o I o I o 1 1 1 o I o I o 

after the execution of 

RLCA 

4MHZE.T.: Hi)Q 

the contents of the Accumulator and Carry Flag will be 

C 7 6 5 4 3 2 1 0 

01 ° I O I O I 1 I O I O I O I 1 I 

69 

RLA 
Operation: 

Format: 

Opcode 

RLA 

Operands 

1 a : a : a : 1 : a : 1 : 1 : 1 1 

Description: 

17 

The contents of the Accumulator (register A) are rotated 
left: the content of bit (/J is copied into bit 1; the previous 
content of bit 1 is copied into bit 2; this pattern is continued 
throughout the register. The content of bit 7 is copied into 
the Carry Flag (C flag in register F) and the previous content 
of the Carry Flag is copied into bit (/J. Bit (/J is the least 
significant bit. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 
Data from Bit 7 of Acc. 

4 MHZ E.T.: 1.(/J(/J 

If the contents of the Accumulator and the Carry Flag are 

C 7 6 5 4 3 2 1 0 
• 

~II O I 1 I 1 I 1 I O I 1 I 1 I O I 

after the execution of 

RLA 

the contents of the Accumulator and the Carry Flag will be 

C 7 6 5 4 3 2 1 0 

G jL-1-1...-1 .l-1 1...J.j_o...1-I _1,__ j1__,__o ~1 



RRCA 

~ 
A 

Operands 

RRCA 

OF 

Description: 

The contents of the Accumulator (register A) is rotated 
right: the content of bit 7 is copied into bit 6; the previous 
content of bit 6 is copied into bit 5; this pattern is continued 
throughout the register. The content of bit (/J is copied into 
bit 7 and also into the Carry Flag (C flag in register F.) Bit 
(/J is the least significant bit. 

M CYCLES: l T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 

C: Data from Bit (/J of Acc. 

Example: 

If the contents of the Accumulator are 

7 6 5 4 3 2 1 0 

010!0!1!0!0!0/1 

After the execution of 

RRCA 

4 MHZ E.T.: 1.(/J(/J 

the contents of the Accumulator and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

01 ° I O I O I 1 I O I O I 0 1 

70 

RRA 
Operation: 

RRA 

lF 

Description: 

The contents of the Accumulator (register A) are rotated 
right: the content of bit 7 is copied into bit 6; the previous 
content of bit 6 is copied into bit 5; this pattern is continued 
throughout the register. The content of bit (/J is copied into 
the Carry Flag (C flag in register F) and the previous content 
of the Carry Flag is copied into bit 7. Bit (/J is the least 
significant bit. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Not affected 
Not affected 
Reset 
Not affected 
Reset 
Data from Bit (/J of Acc. 

4 MHZ E.T.: 1.1/J(/) 

If the contents of the Accumulator and the Carry Flag are 

7 6 5 4 3 2 1 0 C 

after the execution of 

RRA 

the contents of the Accumulator and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

Io! 1J 1J 1 JoJ0JoJ0!0 



RLC r 
Operation: 

Format: 

Opcode Operands 

RLC r 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1 o : o : o : a : o ~r7 I 
Description: 

The eight-bit contents of register rare rotated left: the 
content of bit (/J is copied into bit 1; the previous content of 
bit 1 is copied into bit 2; this pattern is continued 
throughout the register. The content of bit 7 is copied into 
the Carry Flag (C flag in register F) and also into bit (/J. 
Operand r is specified as follows in the assembled object 
code: 

B (/J(/J(/J 
C (/J(/Jl 
D (/Jl(/J 
E (/Jll 
H 1(/J(/J 
L 1(/Jl 
A Ill 

Note: Bit (/J is the least significant bit. 

MCYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.(/J(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Reset 

P/V: 
N: 
C: 

Example: 

Set if parity even; reset otherwise 
Reset 
Data from Bit 7 of source register 

If the contents of register rare 

7 6 5 4 3 2 1 0 

1 1 1 o I o I o 1 1 1 o I a o 
after the execution of 
RLC r 

the contents of register rand the Carry Flag will be 

C 7 6 5 4 3 2 1 0 

[J[o I o I o I 1 I o I o I o 1 

71 

RLC (HL) 
Operation: 

Format: ~ 
(HL) 

Opcode Operands 

RLC (HL) 

I 1 > : 0 : 0 > : 0 : 1 : 1 I CB 

I o : o : o : o : o ;i :i : o 1 06 

Description: 

The contents of the memory address specified by the 
contents of register pair HL are rotated left: the content of 
bit (/) is copied into bit 1; the previous content of bit l is 
copied into bit 2; this pattern is continued throughout the 
byte. The content of bit 7 is copied into the Carry Flag (C 
flag in register F) and also into bit (/J. Bit (/J is the least 
significant bit. 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affectf.:d: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

Example: 

If the contents of the HL register pair are 2828H, and the 
contents of memory location 2828H are 

7 6 5 4 3 2 1 0 

1 I O I O I O I l I O I O I 0 

after the execution of 

RLC (HL) 

the contents of memory locations 2828H and the Carry Flag 
will be 

C 7 6 5 4 3 2 1 0 



RLC (IX+d) 
OR,eration: 

Format: 
-~·---···-"···· ~ 

OX+d) 
Operands_ 

RLC (IX+d) 

I 1 : 1 : 0 :i : 1 > : 0 > ] DD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 > I CB 

I : ; : d : : : : I 
1 o : o : a : a : o :i :i : o 1 06 

DescrjpJion: __ 

The contents of the memory address specified by the sum of 
the contents of the Index Register fX and a two's 
complement displacement integer d, are rotated left: the 
contents of bit (/J is copied into bit 1; the previous content 
of bit I is copied into bit 2; this pattern is continued 
throughout the byte. The content of bit 7 is copied into the 
Carry Flag (C flag in register F) and also into bit (/J. Bit (/J is 
the leas! significant bit. 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Reset 
Set if parity even: reset otherwise 
Reset 
Data from Bit 7 of source register 

If the contents of the Index Register IX are 1 (/J(/J(/JH, and the 
contents of memory location l (/J22H are 

7 6 5 4 3 2 1 0 

I 1 I a I o I o I 1 

after the execution of 

RLC (IX+2H) 

the contents of memory location 1(,il02H and the Carry Flag 
will be 

C 7 6 5 4 3 2 l 0 

72 

RLC (IY+d) 
Operation: 

Format: ~ 
(IY+d) 

Operands 

RLC (IY+d) 

11:1:1:1:1:1:0:11 FD 

I 1 : 1 : 0 : 0 : 1 :: 0 : 1 : 1 ] CB 

l : : : d : : : : I 
1 o : n : o : o : o : 1 ;i : o 1 06 

Descrjption: 

The contents of the memory address specified by the sum of 
the contents of the Index Register IY and a two's 
complement displacement integer d are rotated left: the 
content of bit 0 is copied into bit 1; the previous content of 
bit 1 is copied into bit 2; this process is continued 
throughout the byte. The content of bit 7 is copied into the 
Carry Flag (C flag in register F) and also into bit 0. Bit 0 is 
the least significant bit. 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Condition Bits Affected: 

S: 
Z: 
H: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 
Reset 

P/V: 
N: 
C: 

Example: 

Set if parity even; reset otherwise 
Reset 
Data from Bit 7 of source register 

If the contents of the Index Register JY are 1 (/J'i)(,ilH, and the 
contents of memory location l(/J(,il2H are 

7 6 5 4 3 2 1 0 

after the execution of 

RLC (IY+2H) 

0 0 0 

the contents of memory location 1 (,il(/)2.H and the Carry Flag 
will be 

C 7 6 5 4 3 2 1 0 



RL m 
Operation: 

Format: 

Opcode 

RL 

m 

Operand~ 

m 

Them operand is any ofr,(HL),(IX+d) or (IY+d), as defined 
for the analogous RLC instructions. These various possible 
opcode-operand combinations are specified as follows in the 
assembled object code: 

RLr 

RL (HL) 

RL (IX+d) 

RL(IY+d) 

I 1 : 1 : 0 : 0 : 1 : 0 > '.1 I CB 

1 a: o: o: 1: o :~r~I 
I 1 : i: 0 : 0 : i: 0 : < 1 I CB 

1 a : a : o : i: o : i: i: o I 16 

[ 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I : : : d : : : : I 
! a : a : o : 1 : o : 1 : 1 : o 1 16 

11:1:1:1:1:1:C<il FD 

11:1:0:0:1:0:1:1) CB 

I : : : d : : : : ] 

1 o : o : o : 1 : o : 1 : 1 : o l 16 

*r identifies register B,C,D,E,H.,L or A specified as follows 
in the assembled object code above: 

B (/)(/JI/) 
C (/J<./)1 
D 01(/J 

73 

Description: 

E 
H 
L 
A 

(/)11 
(/J 11 
11,b 1 
111 

The contents of them operand are rotated left: the content 
of bit (/J is copied into bit 1; the previous content of bit 1 is 
copied into bit 2; this pattern is continued throughout the 
byte. The content of bit 7 is copied into the Carry Flag (C 
flag in register F) and the previous content of the Carry Flag 
is copied into bit(/) (Bit (/J is the least significant bit.) 

INSTRUCTION 

RLr 
RL(HL) 
RL (IX+d) 
RL(IY+d) 

M 
_c_vcLES 

..., 
,;, 

4 
6 
6 

C@dition Bits Affected: 

TSTAIES 

8(4,4) 
15(4,4,4,3) 
23( 4,4,3,5,4,3) 
23( 4,4,3,5 ,4,3) 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

Example: 

If the contents of register D and the Carry Flag are 

C 7 6 5 4 3 2 1 0 

after the execution of 

RL D 

4MHZ 
Jl1.,__ 

2.f/J(/J 
3.75 
5.75 
5.75 

the contents of register D and the Carry Flag will be 

C 7 6 5 4 3 2 1 0 



RRC m 
QJ!eration: 

O~ode __ 

RRC 

Op~rands_ 

m 

Them operand is any of r,(HL), (IX+d) or (IY+d), as defined 
for the analogous RLC instructions. These various possible 
opcode-operand combinations are specified as follows in the 
assembled object code: 

RRC r I 1 : 1 : 0 : 0 : 1 : 0 : 1 :· 1 I CB 

1 a: o: o: o: 1 ~r~I 
RRC (HL) I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I o : o ; o ; o ; 1 : 1 : 1 : n f OE 

RRC (IX+d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I OD 

l 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I : : : d : : : : I 
I O : 0 : 0 : 0 : 1 : 1 : 1 : 0 I OE 

RRC (IY +d) I 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I : : : d : : : : I 
I O : 0 : 0 : 0 ;i :i : 1 : 0 I OE 

*r identifies register B,C,D,E,H,L or A specified as follows 
in the assembled object code above: 

74 

~gister. r 

B (/J(/J(/J 
C (/Jf/Jl 
D (/)1(/J 
E (/J 11 
H 1 (/J(/J 
L l (/JI 
A 111 

Description: 

The contents of operand m are rotated right: the content of 
bit 7 is copied into bit 6; the previous content of bit 6 is 
copied into bit 5; this pattern is continued throughout the 
byte. The content of bit f/J is copied into the Carry Flag (C 
flag in the F register) and also into bit 7. Bit (/J is the least 
significant bit. 

M 4MHZ 
INSTRUCTION CYCLES T STATES E.T. 

RRCr 2 8(4,4) 2.f/Jf/J 
RRC (HL) 4 15( 4,4,4,3) ·3.75 
RRC (IX+d) 6 23(4,4,3,5,4,3) 5.75 
RRC (IY+d) 6 23( 4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P /V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit (/J of source register 

Example: 

If the contents of register A are 

7 6 5 4 3 2 1 0 

o o 1 1 1 1 o o I o 1 1 

after the execution of 

RRC A 

the contents of register A and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

I 1 I O I O I 1 I 1 I O I O I O IG 



RR m 
Operation: 

Format: 

Opcode 

RR 

m 
Operand 

m 

Them operand is any ofr, (HL), (IX+d), or (IY+d), as 
defined for the analogous RLC instructions. These various 
possible opcode-operand combinations are specified as 
follows in the assembled object code: 

RRr 

RR(HL) 

li'.i'.0:0:i'.o:i'.1! 
1 a: a: a: i: 1 ~r~I 
li:i'.o:a:i;o:i'.11 

CB 

CB 

I O : 0 : 0 : i'. < < < 0 I lE 

RR(IX+d) I i: < 0: < < < 0: 1 I DD 

I < < 0 : 0 : < 0 : < 1 I CB 

I : : : d: : : : I 
I O : 0 : 0 : < < < < 0 I lE 

RR (IY +d) I O : 0 : 0 : 1 : 1 : 1 : 1 : 0 l 1 E 

I < i: 0 : 0 : < 0 : < 1 I CB 

I : : : d: : : : I 
lo:a:a:<i'.i'.i'.ol IE 

*r identifies registers B,C,D,E,H,L or A specified as follows 
in the assembled object code above: 

75 

Register !... 

B (/)(/)(/) 
C (/)(/)1 
D (/)1(/) 
E (/)11 
H 1 (/)(/) 
L I (/)1 
A 111 

Description: 

The contents of operand mare rotated right: the contents 
of bit 7 is copied into bit 6; the previous content of bit 6 is 
copied into bit 5; this pattern is continued throughout the 
byte. The content of bit(/) is copied into the Carry Flag (C 
flag in register F) and the previous content of the Carry Flag 
is copied into bit 7. Bit (/) is the least significant bit. 

M 4MHZ 
INSTRUCTION CYCLES_ T STATES E.T. _ 

RRr 2 8(4,4) 2.(/)(/) 
RR(HL) 4 15(4,4,4,3) 3.75 
RR(IX+d) 6 23( 4,4,3 ,5,4,3) 5.75 
RR (IY+d) 6 23( 4,4,3 ,5 ,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P /V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit(/) of source register 

Example: 

If the contents of the HL register pair are 4343H, and the 
contents of memory location 4343H and the Carry Flag are 

7 6 5 4 3 2 1 0 C 

1 

after the execution of 

RR ( HL) 

the contents of location 4343H and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 



SLA m 

Qp~_Qdt. 

SLA 

~·---0 
m 

Ou~r.andL 

m 

The m operand is any of r, (HL ), (IX +d) or (IY +d), as 
defined for the analogous RLC instructions. These various 
possible opco(1e•operand combinations are specified as 
follows in the assembled object code: 

SLA r 

SLA (HL) 

SLA (IX+d) 

SLA (IY+d) 

Ii'. i:o:o: i'.o: i: 1j 

1 a: a: i: a: a~,71 
li'.i'.O:o:i;o:i'.11 
lo:a:i'.o'.o:i'.i'.ol 

1i:i:a:i:i:i:o:11 
li'.i'.o'.o:i;o:i'.11 
I : : : d: : : : I 
lo:a:i;o:o:i;i:ol 

li'.i'.i'.i'.i'.i'.0:11 
1i;i;o;o:i;o:i;11 
I : : : < : : : I 
jo;o: i;o:o: i; i'.ol 

CB 

CB 

26 

DD 

CB 

26 

FD 

CB 

26 

*r identifies registers B,C,D,E,H,L or A specified as follows 
in the assembled object code field above: 

B r/Jf/J(/J 
C (/J(/Jl 
D (/Jl(/J 

76 

E 
H 
L 
A 

011 
l(/J(/J 
I (/JI 
11 l 

An arithmetic shift left is perfonned on the contents of 
operand m: bit (/J is reset, the previous content of bit (/J is 
copied into bit l, the previous content of bit I is copied into 
bit 2; this pattern is continued throughout; the content of bit 
7 is copied into the Carry Flag (C flag in register F). Bit (/J is 
the least significant bit. 

INSTRUCTION 

SLAr 
SLA (HL) 
SLA(IX+d) 
SLA(IY+d) 

M 
CYCLES 

2 
4 
6 
6 

Condition Bits Affected: 

T STATES 

8(4,4) 
15( 4,4,4,3) 
23(4,4,3,5,4,3) 
23( 4,4,3 ,5 ,4,3) 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit 7 

Example: 

If the contents of register L are 

7 6 5 4 3 2 1 0 

after the execution of 

SLA L 

4MHZ 
E.T. 

2.(/J(/J 
3.75 
5.75 
5.75 

the contents of register L and the Carry Flag will be 

C 7 6 5 4 3 2 1 0 



SRAm 
Operation: 

Format: 

Opcode 

SRA 

Operands 

m 

The m operand is any of r, (HL ), (IX +d) or (IY +d), as 
defined for the analogous RLC instructions. These various 
possible opcode-operand combinations are specified as 
follows in the assembled object code: 

SRAr 

SRA(HL) 

SRA(IX+d) 

SRA(IY+d) 

l<<o:o:i;o:i:11 
Io: o: < o: l~r;--1 
l<<o:o:i:o:i:11 
t o : o : 1 : o : 1 : 1 : 1 : o 1 

1 1 : 1 : o : 1 : 1 : 1 : o : 1 1 

Ji'.i'.o:o:i;o:i'.11 

I : : :< : : : I 
lo:o:i;o:i'.i'.<of 
11:1:i:1:1:1:0:11 

1 i; 1:0:0: 1:0: 1: 11 

I : : : < : .: : I 

CB 

CB 

2E 

DD 

CB 

2E 

FD 

CB 

I O : 0 : i: 0 : 1 : i: 1 : 0 I 2E 

•r means register B,C,D,E,H,L or A specified as follows 
in the assembled object code field above: 

Register !_ 

B (/J(f,(/) 
C (/J(/Jl 
D (/Jl(/J 

77 

E (/Jll 
H 1(/J(/J 
L 1(/Jl 
A 111 

An arithmetic shift right is performed on the contents of 
operand m: the content of bit 7 is copied into bit 6; the 
previous content of bit 6 is copied into bit 5; this pattern is 
continued throughout the byte. The content of bit (/J is 
copied into the Carry Flag (C flag in register F), and the 
previous content of bit 7 is unchanged. Bit (/J is the least 
significant bit. 

M 4MHZ 
INSTRUCTION CYCLES TSTATES E.T. 

SRAr 2 8(4,4) 2.(/J(/J 
SRA(HL) 4 15( 4,4,4,3) 3.75 
SRA(IX+d) 6 23( 4,4,3,5 ,4,3) 5.75 
SRA(IY+d) 6 23(4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P /V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit (/J of source register 

Example: 

If the contents of the Index Register IX are l(f,(/J(/JH, and 
the contents of memory location 1(/J(/J3H are 

7 6 5 4 3 2 1 0 

1 1 o 1 1 1 1 1 1 1 o I o I a 

after the execution of 

SRA (IX+3H) 

the contents of memory location 1(/J(/J3H and the Carry Flag 
will be 

7 6 5 4 3 2 1 0 C 



SRL m 
Operation: 

Fonnat: 

Opcode 

SRL ·-

0~ 
m 

Operands 

m 

The operand mis any ofr, (HL),.(IX+d) or (IY+d), as 
defined for the analogous RLC instructions. These various 
possible opcode-operand combinations are specified as 
follows in the-assembled 'object code': '"' 

SRL r I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1 a: o: 1: 1: 1 ;-+r~ 1 

SRL (HL) I 1 : 1 : 0: 0 : 1 : 0 : 1 : 1 I CB 

I O : 0 : 1 : 1 : 1 : 1 : 1 : 0 I 3E 

SRL(IX+d) I i: i: 0: 1: i: i: 0: 1 I DD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I : : : d: : : : I 
I O : 0 : i: 1 : 1 : 1 : 1 : 0 I 3E 

SRL (IY+d) j 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I : : : d : : : . : I 
I O : 0 : 1 : 1 : 1 : 1 : 1 : 0 I 3E 

*r identifies registers B,C,D,E,H,L or A specified as follows 
in the assembled object code fields above: 

Register r_ 

B '/Jf/J'/J 
C ~I 
D '/Jl'/J 

78 

E 
H 
L 
A 

Description: 

'/Jll 
1'/J'/J 
1'/Jl 
111 

The contents of operand mare shifted right: the content of 
bit 7 is copied into bit 6; the content of bit 6 is copied into 
bit 5; this pattern is continued throughout the byte. The 
content of bit '/J•is copied into the Carry Flag, and bit 7 is 
reset. Bit (f, is the least significant bit. 

M 4MHZ 
INSTRUCTION CYCLES TSTATES E.T. 

SRLr 2 8(4,4) 2.(~(f, 
SRL(HL) 4 15(4,4,4,3) 3.75 
SRL(IX+d) 6 23(4,4,3,5,4,3) 5.75 
SRL(IY+d) 6 23(4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 

P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit '/J of source register 

Example: 

If the contents of register B are 

7 6 5 4 3 2 1 0 

after the execution of 

SRL B 

the contents of register B and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

o 1 1 o I o I o 1 1 1 1 1 1 Q 



RLD 
Operation: 

Fonnat: 

Opcode 

RLD 

Operands 

li'.1'.1'.o:1'.1'.0:11 
1 o: 1: 1: a: 1: 1: 1:11 

Description: 

ED 

6F 

The contents of the low order four bits (bits 3 ,2,1 and (ft) of 
the memory location (HL) are copied into the high order 
four bits (7 ,6,5 and 4) of that same memory location; the 
previous contents of those high order four bits are copied 
into the low order four bits of the Accumulator (register 
A), and the previous contents of the low order four bits of 
the Accumulator are copied into the low order four bits of 
memory location (HL). The contents of the high order bits 
of the Accumulator are unaffected. Note: (HL) means the 
memory location specified by the contents of the HL register 
pair. 

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4.S(ft 

Condition Bits Affected: 

S: Set if Acc. is negative after operation; reset 
otherwise 

Z: Set if Acc .. is zero after operation; reset other­
wise 

H: Reset 
P/V: Set if parity of Acc. is even after operation: reset 

otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of the HL register pair are 5000H, and the 
contents of the Accumulator and memory location 5000H 
are 

7 6 5 4 3 "2 1 0 

1 l 1 I O I 1 I O j Accumulator 

7 6 5 4 3 2 1 0 

0 I O l l l 1 I O I O I O I .1 I (5000H) 

79 

after the execution of 

RLD 

the contents of the Accumulator and memory location 
5000H will be 

7 6 5 4 3 2 1 0 

0 ! 1 I 1 I 1 I O I O j 1 I 1 I Accumulator 

7 6 5 4 3 2 1 0 

o I o I o 1 l I O j 1 I O I (5000H) 



RRD 
Operation: 

Fonnat: 

Opcode. 

RRD 

·~'"" 
Operands 

li'.<1'.o:i;i;0:1f 
10:1:i:o:0:i:1'.11 

Description: 

ED 

67 

The contents of the low order four bits (bits 3,2,1 and (/J) 
of memory location (HL) are copied into the low order four 
bits of the Accumulator (register A); the previous contents of 
the low order four bits of the Accumulator are copied into 
the high order four bits (7 ,6,5 and 4) oflocation (HL); and 
the previous contents of the high order four bits of (HL) are 
copied into the low order four bits of (HL). The contents of 
the high order bits of the Accumulator are unaffected. Note: 
(HL) means the memory location specified by the contents 
of the HL register pair. 

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4.5(/J 

Condition Bits Affected: 

S: Set if Acc. is negative after operation; reset 
otherwise 

Z: Set if Ace, is zero after operation; reset other­
wise 

H: Reset 
P/V: Set if parity of Acc. is even after operation; reset 

otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of the HL register pair are 5(/J(/J(/JH, and the 
contents of the Accumulator and memory location S(}(}(}H 
are 

7 6 5 4 3 2 1 0 

7 6 5 4 3 2 1 0 

a o 1 1 o I o I o I a I a 1 (5(/J(/J(/JH) 

80 

after the execution of 

RRD 

the contents of the Accumulator and memory location 
5(/J(/J(/JH will be 

7 6 5 4 3 2 1 0 

I 
1 

I 
O 

I 
O 

I 
O 

I 
O 

I 
O 

I 
O 

I 
O 

I 

Accumulato 

7 6 5 4 3 2 1 0 

1 o 1 1 a I o I o I a 1 1 o 1 



BIT SET, RESET AND TEST GROUP 
BIT b, r BIT b, (HL) 
Operation: Z +- rb 

Fonnat: 

BIT 

Operands 

b,r 

(1'.1'.o'.o:i'.o'.i'.11 

IO: 1 ;-:-b~:-+r~I 
Description: 

Cf3 

After the execution of this instruction, the Z flag in the F 
register will contain the complement of the indicated bit 
within the indicated register. Operands b and r are specified 
as follows in the assembled object code: 

Bit 
Tested b Register !_ 

(/J '/J0f/J B (/J(/J(/) 
1 '/J(/Jl C (/J(/Jl 
2 (/JI (p D (/Jl(/J 
3 011 E f/)11 
4 1(/J(/J H 1(/J(/J 
5 I (/J 1 L 1 (/JI 
6 11(/J A 111 
7 11 l 

MCYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2Jft(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Unknown 
Set if specified Bit is (/J; reset otherwise 
Set 
Unknown 
Reset 
Not affected 

If bit 2 in register B contains (/J, after the execution of 

BIT 2,B 

the Z flag in the F register will contain l, and bit 2 in register 
B will remain (/J. Bit (/Jin register Bis the least significant bit. 

8.1 

Operation: Z +- (HL)b 

Fonnat: 

BIT 

Operands 

b,(HL) 

11:1:0:0:1:0:1:11 

I O: 1 ;-:-b~ 1: 1 : 0 I 
Description: 

CB 

After the execution of this instruction, the Z flag in the F 
register will contain the complement of the indicated bit 
within the contents of the HL register pair. Operand b is 
specified as follows in the assembled object code: 

Bit 
Tu-~~ b 

(/J (/J(/J(p 
l (/J(/Jl 
2 (i)lf/J 
3 (/JI l 
4 l(p</J 
5 l (/Jl 
6 11(/J 
7 111 

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3J~(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
H: 
C: 

Example: 

Unknown 
Set if specified Bit is (/J; reset otherwise 
Set 
Unknown 
Reset 
Not affected 

If the HL register pair contains 4444H, and bit 4 in the 
memo1y location 444H contains l, after the execution of 

BIT 4, ( HL) 

the Z flag in the F register will contain (/J, and bit 4 in 
memory location 444H will still contain 1 . (Bit(/) in memory 
location 444H is the least significant bit.) 



BIT b, (IX+d) 
QP)'r.ttion: Z +- (IX+d)b 

Fonnat: --.. -~-------

Opcode Operands 

BIT b ,(IX +cl) 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

[ 1 '. 1 '. o '. o '. 1 : a : 1 '. 1 I CB 

I : : ; d : : : : I 
I: 0 : 1 :-7b+-+ 1 : 1 : 0 I 

Description: 

After the execution of this instruction, the Z flag in the F 
register will contain the complement of the indicated bit 
within the contents of the memory location pointed to by 
the sum of the contents register pair IX (Index Register IX) 
and the two's complement displacement integer d. Operand b 
is specified as follows in the assembled object code. 

Bit 
Tested b 

(/J (/J(/Jf/J 

I f/J()) l 
2 (pl()) 
3 ())11 
4 1(/Jf/J 
5 11~1 
6 11(/J 
7 111 

M CYCLES: 5 T STATES: 2(p(4,4,3,5,4) 4 MHZ E.T.: 5.<ft(/J 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Unknown 
Set if specified Bit is (/J; reset otherwise 
Set 
Unknown 
Reset 
Not affected 

If the contents of Index Register IX are 2())(/J(/JH, and bit 6 
in memory location 2(/J(/J4H contains 1, after the execution of 
BIT 6, ( IX+4H) 

the Z flag in the F register will contain (/J, and bit 6 in 
memory location 2())(/J4H will still contain 1. (Bit (/Jin 
memory location 2(/J(/J4H is the least significant bit.) 

82 

BIT b, (IY +d) 
Qperation: Z +- (I Y +d) b 

BIT b,(IY+d) 

11:1:1:1:i:1:o:i1 FD 

I 1 : 1 : 0 : 0 : 1 : 0 > '.1 I CB 

I : : : d : : : : I 
I O > :-7b~ 1 > : 0 I 

Description: 

After the execution of this instruction, the Z flag in the F 
register will contain the complement of the indicated bit 
within the contents of the memory location pointed to by 
the sum of the contents of register pair IY (Index Register 
IY) and the two's complement displacement integer d. 
Operand b is specified as follows in the assembled object 
code: 

Bit 
Tested b 

r/J (/)(/)(/J 
I r/Jf/Jl 
2 (/)1(/) 
3 (/)11 
4 1())(/J 
5 1 r/Jl 
6 11(/J 
7 111 

M CYCLES: 5 T STATES: 2(/)(4,4,3,5,4) 4 MHZ E.T.: 5.C~(/) 

Condition Bits Affected: 

S: 
Z: 
H: 

P/V: 
N: 
C: 

Example: 

Unknown 
Set if specified Bit is (/J; reset otherwise 
Set 
Unknown 
Reset 
Not affected 

If the contents of Index Register are 2r/J(/J(/JH, and bit 6 in 
memory location 2(/J(/J4H contains 1, after the execution of 

BIT 6, CIY+4H) 
the Z flag in the F register still contain (/J, and bit 6 in 
memory location 2(/J(/J4H will still contain 1. (Bit f/J in 
memory location 2(/J(/J4H is the least significant bit.) 



SET b, r 
Operation: rb +- 1 

Format: 

SET 

Operands 

b,r 

I 1 : 1 : 0 : 0 : 1 : 0 '.1 '.1 I CB 

11 : 1 ~b-;--:-::r7 I 
Description: 

Bit b (any bit, 7 through 0) in register r (any of register 
B,C,D,E,H,L or A) is set. Operands b and rare specified as 
follows in the assembled object code: 

Bit b Register _.!_ 

0 000 B 
1 0\31 C 
2 010 D 
3 011 E 
4 10(} H 
5 101 L 
6 110 A 
7 111 

MCYCLES: 2 T STATES: 8(4,4) 

Condition Bits Affected: None 

Example: 

After the execution of 

SET 4,A 

000 
001 
010 
011 
10\3 
101 
111 

4 MHZ E.T.: 2.<~0 

bit 4 in register A will be set: (Bit 0 is the least significant 
bit.) 

83 

SET b, (HL) 
Operation: (HL)b +-1 

Format: 

SET 

Operands 

b,(HL) 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

j 1 : 1 ~b~ 1 : 1 : 0 I 
Description: 

Bit b (any bit, 7 through 0) in the memory location 
addressed by the contents of register pair HL is set. Operand 
bis specified as follows in the assembled object code: 

Bit 
Tested b 

0 000 
1 0\31 
2 010 
3 011 
4 10\3 
5 101 
6 110 
7 111 

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75 

Condition Bits Affected: None 

Example: 

If the contents of the HL register pair are 30\30H, after the 
execution of 

SET 4, ( HL) 

bit 4 in memory location 3MH will be 1. (Bit 0 in memory 
location 30\30H is the least significant bit.) 



SET b, (IX+d) 
Operatior1: (IX+d)b ..--1 

Format: 

Opcode 

SET 

OperaJlds 

b,(IX+d) 

[1 : 1 ~:> '. 1 '. 1 : 1 : 0 : 1 I DD 

[~: '.1 : a:~· 0 > : 0 > : ~ l CB 

I : : -> : : : : I 
r: 1 ~b~l : 1 : o 1 

Descrij.>tion: 

Bit b (any bit, 7 through (/J) in the memory location 
addressed by the sum of the contents of the IX register pair 
(Index Register IX) and the two's complement integer dis 
set. Operand b is specified as fol.lows in the assembled object 
code: 

Bit 
I~steq Q_ 

(/J (/)(/)(/) 
1 (/J(/)1 
2 (/)Up 
3 (/Jll 
4 1(/J(/J 
s 1(/JI 
6 11(/J 
,.., 

11 l I 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Co!!_(,iition Bits Affected: None 

If the contents of Index Register are 20(/J(/JH, after the 
execution of 

SET 0,(IX+3H) 

bit (/Jin memory location 2(/J(/J3H will be 1. (Bit (/Jin memory 
location 21;l(/J3H is the least significant bit.) 

84 

SET b, (IV +d) 
Operation: (IY+d)b ~ 1 

Format: 

SET b,(IY+d) 

[1:1:1:i:1:1:0:11 FD 

11:1:0:0:1:0:i:11 CB 

I : : ; d : : : : I 
11 : 1 ~b~ 1 : 1 : 0 I 

Description: 

Bit b (any bit, 7 through (/J) in the memory location 
addressed by the sum of the contents of the IY register pair 
(Index Register IY) and the two's complement displacement 
dis set. Operand bis specified as follows in the assembled 
object code: 

Bit 
Tested b 

(/J (/J(/J(/J 
1 0(/Jl 
2 (/Jl(/J 
3 (/Jl l 
4 10(/J 
5 l (/J 1 
6 110 ,., 

111 I 

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75 

Condition Bits Affected: None 

Example: 

If the contents of Index Register IY are 2(p(/J(/JH, after the 
execution of 

SET 0,(IY+3H) 

bit (/Jin memory location 2(/J(/J3H will be 1. (Bit (/Jin memory 
location 2(/J(/J3H is the least significant bit.) 



RES b, m 
Operation: Sb+-- 0 

Format: 

RES 

Operands 

b,m 

Operand b is any bit (7 through (/J) of the contents of the m 
operand, (any of r, (HL), (IX+d) or (IY+d) as·defined for 
the analogous SET instructions. These various possible 
opcode-operand combinations are assembled as follows in the 
object code: 

RES b,r 

RES b,(HL) 

RES b,(IX+d) 

RES b,(IY+d) 

j1:1: • :o:1:o'.1'.1I 

11 : 0 :~b-;--:~r7 I 
1 1 : 1 : a : o : 1 : o : 1 : 1 1 

11 :o~b~l ;i :O j 

11 :i :• :1 :1 :1 :• :1 I 
I 1 : 1 : 0 : 0 : 1 : 0 : l : 1 I 
I : : >: : : : I 
11 :• ~b~l > :• I 
!1 > > > > > :• > I 

CB 

CB 

DD 

CB 

FD 

I 1 > :• :• > :0 > > I CB 

I : : :d : : : : I 
I 1: 0 ~b~1: 1: 0 I 

85 

Bit 
Reset Q_ Re!rtster !'.._ 

(/) 1/JI/J(/) 
1 (/)(/)1 
2 (/)l(/) 
3 (/)11 
4 11/J(/J 
5 11/Jl 
6 11(/J 
7 111 

Description: 

Bit b in operand m is reset. 

INSTRUCTION 

RESr 
RES (HL) 
RES (IX+d) 
RES (IY+d) 

M 
CYCLES 

4 
4 
6 
6 

B 
C 
D 
E 
H 
L 
A 

Condition Bits Affected: None 

Example: 

After the execution of 

RES 6,D 

(/)(/)</J 
(/)(/)1 
(/)1 </J 
011 
1(/)(/) 
1(/Jl 
111 

T STATES 

8(4,4) 
15(4,4,4,3) 
23( 4,4,3,5,4,3) 
23(4,4,3,5,4,3) 

4MHZ 
~-

2.f/)(/) 
3.75 
5.75 
5.75 

bit 6 in register D will be reset. (Bit (/J in register D is the least 
significant bit.) 



JUMP GROUP 

JP nn 
~ration: .. PC +- nn 

Fonnat: 

JP nn 

1i:i:o:o:o:o:i:11 
I : : : n : : : : I 
I : : : n : : : : I 

C3 

Note: The first operand in this assembled object code is the 
low order byte of a 2-byte address. 

Description: 

Operand nn is loaded into register pair PC (Program Counter) 
and points to the address of the next program instruction to 
be executed. 

M CYCLES: 3 T STATES: 1(/)(4,3,3) 4 MHZ E.T.: 2.5(/J 

Condition Bits Affected: None 

86 

JP cc, nn 
Qp_eration: IF cc TRUE, PC +- nn 

Operands 

JP cc, nn 

11 : 1 ~cc~ 0 : 1 : O I 
I · : : : n : : : : I 
I : : >: : : : I 

Note: The first n operand in this assembled object code is 
the low order byte of a 2-byte memory address. 

Pescription: 

ff condition cc is true, the instruction loads operand nn into 
register pair PC (Program Counter), and the program 
continues with the instruction beginning at address nn. If 
condition cc is false, the Program Counter is incremented as 
usual, and the program continues with the next sequential 
instruction. Condition cc is programmed as one of eight 
status which corresponds to condition bits in the Flag 
Register (register F). These eight status are defined in the table 
below which also specifies the corresponding cc bit fields in 
the assembled object code. 

RELEVANT 
~ CONDITION FLAG 

</J(/J</J NZ non zero z 
(/J</Jl Z zero z 
</Jl</J NC no carry C 
(/Jll C carry C 
1(/J(p PO parity odd P/V 
1 (/Jl PE parity even P/V 
11(/J P sign positive s 
111 M sign negative s 

M CYCLES: 3 T STATES: 1(/)(4,3,3) 4 MHZ E.T.: 2.5(/J 

Condition Bits Affected: None 

Example: 

If the Carry Flag (C flag in the F register) is set and the 
contents of address 152(/J are (/J3H, after the execution of 

JP C,152.0H 

the Program Counter will contain 1520H, and on the next 
machine cycle the CPU will fetch from address 152(/JH the 
byte (/J3H. 



JR e 
Operation: PC -+- PC + e 

Format: 

Opcode 

JR 

Operand 

e 

1 a :a :a > > : o :a : o 1 18 

I : : ~-z: : : : I 
Description: 

This instruction provides for unconditional branching to 
other segments of a program. The value of the displacement e 
is added to the Program Counter (PC) and the next 
instruction is fetched from the location designated by the 
new contents of the PC. This jump is measured from the 
address of the instruction opcode and has a range of -126 to 
+ 129 bytes. The assembler automatically adjusts for the 
twice incremented PC. 

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.Cpf/J 

Condition Bits Affected: None 

Example: 

Tojump forward 5 locations from address 48(/J, the 
following assembly language statement is used: 

JR $+5 

The resulting object code and final PC value is shown below: 

Location 

48(/J 
481 
482 
483 
484 
485 

Instruction 

18 
f/)3 

-+- PC after jump 

87 

JR C, e 
Operation: If C = 0, continue 

If C = 1, PC-+- PC+ e 

Format: 

Opcode 

JR 

Operands 

C,e 

1 a : o : 1 : 1 : 1 : o : o : a 1 

I : : :e-2: : : : I 
Description: 

38 

This instruction provides for conditional branching to other 
segments of a program depending on the results of a test on 
the Carry Flag. Jf the flag is equal to a 'l ', the value of the 
displacement e is added to the Program Counter (PC) and 
th~ next instruction is fetched from the location designated 
by the new contents of the PC. The jump is measured from 
the address of the instruction opcode and has a range of 
-126 to + 129 bytes. The assembler automatically adjusts for 
the twice incremented PC. 

If the flag is equal to a 'f/J', the next instruction to be 
executed is taken from the location following this 
instruction. 

If condition is met: 

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.:3.f/Jf/J 

If condition is not met: 

MCYCLES: 2 T STATES: 7(4,3) 

Condition Uits Affected: None 

Example: 

4 MHZ E.T.: 1.75 

The Carry Flag is set and it is required to jump back 4 
locations from 480. The assembly language statement is: 

JR C,$-4 

The resulting object code and final PC value is shown below: 

Location 

47C 
47D 
47E 
47F 
480 
481 

!.!lstruction 

-+- PC after jump 

38 
FA (l's complement -6) 



JR NC, e 
Operation: If C = 1, continue 

If C = 0, PC +-PC+ e 

Format: 

Opcode 

JR 

Operands 

NC,e 

1 o : o : 1 : 1 : o : o : a : o 1 30 -

I : : :e-2: : : : I 
Description: 

This instruction provides for conditional branching to other 
segments of a program depending on the results of a test on 
the Carry Flag. If the flag is equal to '(/J', the value of the 
displacement e is added to the Program Counter (PC) and the 
next instruction is fetched from the location designated by 
the new contents of the PC. The jump is measured from the 
address of the instruction opcode and has a range of -126 
to +129 byte. The assembler automatically adjusts for the 
twice incremented PC. 

If the flag is equal to a 'l ', the next instruction to be 
executed is taken from the location following this 
instruction. 

If the condition is met: 

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.(/J(/J 

If the condition is not met: 

MCYCLES: 7 T STATES: 7(4,3) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 1.75 

The Carry Flag is reset and it is required to repeat the jump 
instruction. The assembly language statement is: 

JR NC,$ 

The resulting object code and PC after the jump are shown 
below: 

Location 

48(/J 
481 

Instruction 

3(/J +- PC after jump 
(/J(/J 

88 

JR Z, e 
Operation: If Z = 0, continue 

If Z = 1, PC +- PC + e 

Format: 

Opcode 

JR 

Operands 

Z,e 

I o : o : 1 : o : 1 : o : n : n I 28 

I : : :e-2: : : : I 
Description: 

This instruction provides for conditional branching to other 
segments of a program depending on the results of a test on 
the Zero Flag. If the flag is equal to a '1 ', the value of the 
displacement e is added to the Program Counter (PC) and the 
next instruction is fetched from the location designated by 
the new contents of the PC. The jump is measured from the 
address of the instruction opcode and has a range of -126 
to + 129 bytes. The assembler automatically adjusts for the 
twice incremented PC. 

If the Zero Flag is equal to a '(/J', the next instruction to be 
executed is taken from the location following this 
instruction. 

If the condition is met: 

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.(/J(/J 

If the condition is not met: 

MCYCLES: 2 T STATES: 7(4,3) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 1.75 

The Zero Flag is set and it is required to jump forward 5 
locations from address 3(/J(/J. The following assembly language 
statement is used: 

JR 2,$ +5 

The resulting object code and final PC value is shown below: 

Location 

3(/J(/J 
3(/Jl 
3(/)2 
3(/)3 
3(/)4 
3(/)5 

Instruction 

28 
(/J3 

+- PC after jump 



JR NZ, e 
Operation: If Z = 1, continue 

If Z = 0, PC +- PC + e 

Format: 

Opcode 

JR 

Operands 

NZ,e 

1 a : a : 1 : a : o : a : a : o 1 

I : : :e-2: : : : I 
Description: 

2() 

This instruction provides for conditional branching to other 
segments of a program depending on the results of a test on 
the Zero Flag. If the flag is equal to a 'O', the value of the 
displacement e is added to the Program Counter (PC) and the 
next instruction is fetched from the location designated by 
the new contents of the PC. The jump is measured from the 
address of the instruction opcode and has a range of -126 to 
+ 129 bytes. The assembler automatically adjusts for the 
twice incremented PC. 

If the Zero Flag is equal to a '1 ', the next instruction to be 
executed is taken from the location following this 
instruction. 

If the condition is met: 

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3J/J0 

If the condition is not met: 

MCYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75 

Condition Bits Affected: None 

I11e Zero Flag is reset and it is required to jump back 4 loca­
tions from 480. The assembly language statement is: 

JR NZ,$-4 

The resulting object code and final PC value is shown below: 

Location 

47C 
47D 
47E 
47F 
480 
481 

rnstruction 

+- PC after jump 

20 
FA (2' complcment-6) 

89 

JP (HL) 
Operation: PC +- H L 

Format: 

JP 

Description: 

Operands 

(HL) 

E9 

The Program Counter (register pair PC) is loaded with the 
contents of the HL register pair. The next instruction is 
fetched from the location designated by the new contents 
of the PC. 

M CYCLES: 1 T STATES: 4 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 1.00 

If the contents of the Program Counter are 1000H and the 
contents of the HL register pair are 4800H, after the 
execution of 

JP ( HL) 

the contents of the Program Counter wil1 he 4800H. 



JP (IX) 
Operation: PC+- IX 

For.m!t;_ 
Opsode_ 

JP 

O.nerands __ . 

(IX) 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

1 1 : 1 : 1 : o : 1 :· o : o : 1 1 E 9 

The Program Counter (register pair PC) is loaded with the 
contents of the IX Register Pair (Index Register IX). The 
next instruction is fetched from the location designated by 
the new contents of the PC. 

MCYCLES: 2 T STATES: 8(4,4) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 2J/J</J 

If the contents of the Program Counter are 1(/J(/J</JH, and the 
contents of the IX Register Pair are 48(/J</JH, after the 
execution of 

JP ( IX) 

the contents of the Program Counter will be 48</J(/JH. 

90 

JP (IV) 
Operation: PC +-- IV 

Format: 

Operands 

JP (IY) 

11:i:1:1:1:1:0:11 FD 

I 1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 I E9 

Description: 

The Program Counter (register pair PC) is loaded with the 
contents of the IY register pair (Index Register IY). The next 
instruction is fetched from the location designated by the 
new contents of the PC. 

M CYCLES: 2 T STATES: 8(4,4) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 2J/Jf/J 

If the contents of the Program Counter are 1 (/J</J</JH and the 
contents of the IY Register Pair are 48</J(/JH, after the 
execution of 

JP (IY) 

the contents of the Program Counter will be 480</JH. 



DJNZ, e 
Operation: -­

Format: 

Opcode 

DJNZ 

Operands 

e 

1 o : o : o : 1 : o : o : a : o 1 10 

I : : ~- 2: : : : I 
Description: 

The instruction is similar to the conditional jump 
instructions except that a register value is used to determine 
branching. The B register is decremented and if a non zero 
value remains, the value of the displacement e is added to 
the Program Counter (PC). The next instruction is fetched 
from the location designated by the new contents of the PC. 
The jump is measured from the address of the instruction 
opcode and has a range of -126 to + 129 bytes. The 
assembler automatically adjusts for the twice incremented 
PC. 

If the result of decrementing leaves B with a zero value, the 
next instruction to be executed is taken from the location 
following this instruction. 

If 81=0: 

M CYCLES: 3 T STATES: 13(5,3,5) 4 MHZ E.T.: 3.25 

IfB=0: 

MCYCLES: 2 T STATES: 8(5,3) 

Condition Bits Affected: None 

Example: 

4 MHZ E.T.: 2J/J0 

A typical software routine is used to demonstrate the use of 
the DJNZ instruction. This routine moves a line from an 
input buffer (INBUF) to an 0utput buffer (OUTBUF). It 
moves the bytes until it finds a CR, or until it has moved 
80 bytes, whichever occurs first. 

LD B,80 ;Set up counter 
LD HL,Inbuf ;Set up pointers 
LD DE,Outbuf 

LOOP: LD A,(HL) ;Get next byte from 
~nput buffer 

LD (DE),A ;Store in output buffer 
CP 00H ;Is it a CR? 
JR Z,DONE ;Yes finished 

DONE: 

91 

INC 
INC 
DJNZ 

HL 
DE 
LOOP 

;Increment pointers 

;Loop back if 80 
;bytes have not 
;been moved 



CALL AND RETURN GROUP 

CALL nn 
Operation: (SP-1) +- PCH, (SP-2) +- PC L, PC +- nn 

Format: 

Operands 

CALL nn 

f i'.i'.o:o:1'.i'.0:11 

I : : : ": : : : I 
I : : : ": : : : I 

CD 

Note: The first of the two n operands in the assembled 
object code above is the least significant byte of a two-byte 
memory address. 

Description: 

After pushing the current contents of the Program Counter 
(PC) onto the top of the external memory stack, the 
operands nn are loaded into PC to point to the address in 
memory where the first opcode of a subroutine is to be 
fetched. (At the end of the subroutine, a RETum instruction 
can be used to return to the original program flow by 
popping the top of the stack back into PC.) The push is 
accomplished by first decrementing the current contents of 
the Stack Pointer (register pair SP), loading the high-order 
byte of the PC contents into the memory address now 
pointed to by the SP; then decrementing SP again, and 
loading the low-order byte of the PC contents into the top of 
stack. Note: Because this-Ts a 3-byte instruction, the Program 
Counter will have been incremented by 3 before the push is 
executed. 

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25 

Condition Bits Affected: None 

Example: 

If the contents of the Program Counter are 1A47H, the 
contents of the Stack Pointer are 30~2H, and memory 
locations have the contents: 

Location 

1A47H 
1A48H 
1A49H 

Contents 

CDH 
35H 
21H 

92 

then if an instruction fetch sequence begins, the three-byte 
instruction CD3521H will be fetched to the CPU for execu­
tion. The mnemonic equivalent of this is 

CALL 2135H 

After the execution of this instruction, the contents of 
memory address 3~1H will be lAH, the contents of address 
3000H will be 4AH, the contents of the Stack Pointer will 
be 30~0H, and the contents of the Program Counter will be 
2135H, pointing to the address of the first opcode of the 
subroutine now to be executed. 



CALL cc, nn 
Operation: IF cc TRUE: (SP-1) ~ PCH 

(SP-2) ~ PCL,PC ~ nn 

Format: 

Opcode 

CALL 

Operands 

cc,nn 

I i'. 1 ~:cc+-+< O: 0 I 
I : : > : : : : I 
I : : > : : : : I 

Note: The first of the two n operands in the assembled 
object code above is the least significant byte of the two-byte 
memory address. 

Description: 

If condition cc is true, this instruction pushes the current 
contents of the Program Counter (PC) onto the top of the 
external memory stack, then loads the operands nn into PC 
to point to the address in memory where the first opcode of 
a subroutine is to be fetched. (At the end of the subroutine, 
a RETurn instruction can be used to return to the original 
program flow by popping the top of the stack back into PC.) 
If condition cc is false, the Program Counter is incremented 
as usual, and the program continues with the next sequential 
instruction. The stack push is accomplished by first decre­
menting the current contents of the Stack Pointer (SP), 
loading the high-order byte of the PC contents into the 
memory address now pointed to by SP; then decrementing 
SP again, and loading the low-order byte of the PC contents 
into the top of the stack. Note: Because this is a 3-byte 
instruction, the Program Counter will have been incremented 
by 3 before the push is executed. Condition cc is 
programmed as one of eight status which corresponds to 
condition bits in the Flag Register (register F). Those eight 
status are defined in the table below, which also specifies the 
corresponding cc bit fields in the assembled object code: 

Relevant 
cc Condition ~--

(/J(/)(/) NZ non zero z 
0(/)1 Z zero z 
f/110 NC non carry C 
(/)11 C carry C 
l (/)C/J PO parity odd P/V 
I C/J I PE parity even P/V 
J l C/J P sign positive s 
l J I M sign negative s 

If cc is true: 

93 

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25 

If cc is false: 

MCYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.5(/J 

Condition Bits Affected: None 

Example: 

If the C Flag in the F register is reset, the contents of the 
Program Counter are 1A47H, the contents of the Stack 
Pointer are .3(/J(i}2H, and memory locations have the contents: 

Location 

1A47H 
1A48H 
1A49H 

Contents 

D4H 
35H 
21H 

then if an instruction fetch sequence begins, the three-byte 
instruction D43521H will be fetched to the CPU for execu­
tion. The mnemonic equivalent of this is 

CALL NC,2135H 

After the execution of this instruction, the contents of 
memory address 3(/J(/J 1 H will be 1 AH, the contents of address 
3(/J00H will be 4AH, the contents of the Stack Pointer will 
be 3(/J(/Jv}H, and the contents of the Program Counter will be 
2135H, pointing to the address of the first opcode of the 
subroutine now to be executed. 



RET 

Format: 

Qpcode 

RET 

Description: 

Control is returned to the original program flow by popping 
the previous contents of the Program Counter (PC) off the 
top of the external memory stack, where they were pushed 
by the CALL instruction. This is accomplished by first 
loading the low-order byte of the PC with the contents of the 
memory address pointed to by the Stack Pointer (SP), then 
incrementing the SP and loading the high-order byte of the 
PC with the contents of the memory address now pointed to 
by the SP. (The SP is now incremented a second time.) On 
the following machine cycle the CPU will fetch the next 
program opcode from the location in memory now pointed 
to by the PC. 

M CYCLES: 3 T STATES: H,ll(4,3,3) 4 MHZ E.T.: 2.5(/J 

Condition Bits Affected: None 

Example: 

If the contents of the Program Counter are 3535H, the 
contents of the Stack Pointer are 2(p(/J(/JH, the contents of 
memory location 2(1)(/J(l)H are BSH, and the contents of 
memory location 2(/J(/JlH are 18H, then after the execution of 

RET 

the contents of the Stack Pointer will be 2(/J(/J2H and the 
contents of the Program Counter will be l 8BSH, pointing to 
the address of the next program opcode to be fetched. 

94 



RET cc 
Operation: IF cc TRUE: PCL +- (SP), PCH +- (SP+I) 

Format: 

Opcode 

RET 

Operand 

cc 

j 1 : 1 ~:cc~ 0 : 0 : 0 I 
Description: 

If condition cc is true, control is returned to the original 
program flow by popping the previous contents of the 
Program Counter (PC) off the top of the external memory 
stack, where they were pushed by the CALL instruction. 
This is accomplished by first loading the low-order byte of 
the PC with the contents of the memory address pointed to 
by the Stack Pointer (SP), then incrementing the SP, and 
loading the high-order byte of the PC with the contents of 
the memory address now pointed to by the SP. (The SP is 
now incremented a second time.) On the following machine 
cycle the CPU will fetch the next program opcode from the 
location in memory now pointed to by the PC. If condition 
cc is false, the PC is simply incremented as usual, and the 
program continues with the next sequential instruction. 
Condition cc is programmed as one of eight status which 
correspond to condition bits in the Flag Register (register F). 
These eight status are defined in the table below, which also 
specifies the corresponding cc bit fields in the assembled 
object code. 

Relevant 
cc Condition Flag 

(/J(/J(/J NZ non zero z 
(/)(/JI Z zero z 
(/Jl(/J NC non carry C 
(/Jll C carry C 
1(/J(/J PO parity odd P/V 
1 (/Jl PE parity even P/V 
11 {p P sign positive s 
111 M sign negative s 

If cc is true: 

M CYCLES: 3 T STATES: I 1(5,3,3) 4 MHZ E.T.: 2.75 

1f cc is false: 

M CYCLES: 1 TSTATES: 5 4 MHZ E.T.; 1.25 

Condition Bits Affected: None 

If the S flag in the F register is set, the contents of the 
Program Counter are 3535H, the contents of the Stack 
Pointer are 2(/J(/J(/JH, the contents of memory location 2(p(/J(pH 
are B5H, and the contents of memory location 2(/J(/JlH are 
l8H, then after the execution of 

95 

RET M 

the contents of the Stack Pointer will be 2(/J(/J2H and the 
contents of the Program Counter will be l 8BSH, pointing 
to the address of the next program opcode to be fetched. 



RETI 
QQ~!!t.:!I!ll}: Return from interrupt 

RETI 

j1:1:1:o:i:1:o:1! ED 

lo'.1'.o'.n'.1'.1'.o'.11 4D 

Description: 

This instruction is used at the end of an interrupt service 
routine to: 

1. Restore the contents of the Program Counter (PC) 
(analogous to the RET instruction). 

2. To signal an 1/0 device that the interrupt routine has been 
completed. The RETI instruction facilitates the nesting 
of interrupts allowing higher priority devices to suspend 
service oflower priority service routines. This instruction 
also resets the IFFl and IFF2 flip flops. 

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.SQ 

Condition Bits Affected: None 

Example: 

Given: Two interrupting devices, A and B connected in a 
daisy chain configuration with A having a higher priority 
than B. 

A • B 

~ IEI IEO H IEI IEO 

r INT 

~ 

B generates an interrupt and is acknowledged. (The interrupt 
enable out, IEO, of B goes low, blocking any lower priority 
devices from interrupting while B is being serviced). Then A 
generates an interrupt, suspending service of B. (The IEO of 
A goes 'low' indicating that a higher priority device is being 
serviced.) The A routine is completed and a RETI is issued 
resetting the IEO of A, allowing the B routine to continue. A 
second RETI is issued on completion of the B routine and 
the IEO of Bis reset (high) allowing lower priority devices 
interrupt access. 

96 

RETN 
Operatfo~_: Return from non maskable interrupt 

Fonnat: 

RETN 

11>>:0>>:0>I ED 

1 a :i :a :a :a :i :a > 1 45 

Description: 

Used at the end of a service routine for a non maskable 
interrupt, this instrnction executes an unconditional return 
which functions identical to the RET instruction. That is, 
the previously stored contents of the Program Counter (PC) 
are popped off the top of the external memory stack; the 
low-order byte of PC is loaded with the contents of the 
memory location pointed to by the Stack Pointer (SP), 
SP is incremented, the high-order byte of PC is loaded with 
the contents of the memory location now pointed to by SP, 
and SP is incremented again. Control is now returned to the 
original program flow: on the following machine cycle the 
CPU will fetch the next opcode from the location in memory 
now pointed to by the PC. Also the state of IFF2 is copied 
back into IFFl to the state it had prior to the acceptance 
of the NMI. 

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50 

Condition Bits Affected: None 

Example: 

If the contents of the Stack Pointer are l(p(p(pH and the 
contents of the Program Counter are 1 A45H when a non 
maskable interrupt (NMI) signal is received, the CPU will 
ignore the next instruction and will instead restart to 
memory address (p(p66H. That is, the current Program 
Counter contents of l A45H will be pushed onto the external 
stack address of OFFFH and OFFEH, high order-byte first, 
and (p(p66H will be loaded onto the Program Counter. That 
address begins an interrupt service routine which ends with 
RETN instruction. Upon the execution of RETN, the former 
Program Counter contents are popped off the external 
memory stack, low-order first, resulting in a Stack Pointer 
contents again of lQ(p(pH. The program flow continues where 
it left off with an opcode fetch to address 1A45H. 



RST p 
Operation: 
(SP-1) +- PCH, (SP-2) +- PCL, PCH ....- 0, PCL +-P 

Format: 

Opcode 

RST p 

Description: 

The current Program Counter (PC) contents are pushed onto 
the external memory stack, and the page zero memory 
location given by operand pis loaded into the PC. Program 
execution then begins with the opcode in the address now 
pointed to by PC. The push is performed by first decrement­
ing the contents of the Stack Pointer (SP), loading the high­
order byte of PC into the memory address now pointed to by 
SP, decrementing SP again, and loading the low-order byte of 
PC into the address now pointed to by SP. The ReSTart 
instruction allows for a jump to one of eight addresses as 
shown in the table below. The operand pis assembled into 
the object code using the corresponding T state. Note: Since 
all addresses are in page zero of memory, the high order byte 
of PC is loaded with 01,3H. The number selected from the "p" 
column of the table is loaded into the low-order byte of PC. 

p t 

00H (/J(/J(/J 
(/J8H (/JQ)l 
1(/JH (/Jl(/J 
18H (/Jl 1 
2(/JH 1(/JQ) 
28H 1(,l)l 
3(/JH 11(/J 
38H 111 

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75 

~Jf!!..l!!.clt;_: 

If the contents of the Program Counter are 15B3H, after 
the execution of 

RST 18H (Object code 11 (/JI 111) 

the PC will contain (/J(/Jl 8H, as the address of the next opcode 
to be fetched. 

97 



INPUT AND OUTPUT GROUP 

IN -A, (n) IN r, (C) 
Operation: A+- (n) 

format: 

Opcode Operands 

IN A,(n) 

I 1 : 1 : 0 : 1 > : 0 : 1 : 1 I DB 

I : : : " : : : : I 
DescriJ)tion: 

~ operand n is placed on the bottom half (A0 through 
A 7) of the address bus to select the 1/0 device at one of 256 
possible ports. The contents of the Accumulator also appear 
on the top half (A8 through Al 5) of the address bus at this 
time. Then one byte from the selected port is placed on the 
data bus and written into the Accumulator (register A) 
in the CPU. 

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75 

Condition Bits Affected: None 

Example: 

If the contents of the Accumulator are 23H and the byte 
7BH is available at the peripheral device mapped to 1/0 
port address 01H, then after the execution of 

IN A,(01H) 

the Accumulator will contain 7BH. 

98 

Operation: r +- (C) 

Format: 

Opcode• Operands 

IN r,(C) 

I 1 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED 

1 a : 1 ~r-;-: a : a : a 1 

Description: 

The contents of register C are placed on the bottom half 
(A0 through A7) of the address bus to select the 1/0 device 
at one of 256 possible ports. The contents of Register B are 
placed on the top half (A8 through Al 5) of the address bus 
at this time. Then one byte from the selected port is placed 
on the data bus and written into register r in the CPU. 
Register r identifies any of the CPU registers shown in the 
following table, which also shows the corresponding 3-bit 
"r" field for each. The flags will be affected, checking the 
input data. 

~ !... 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00 

(::pndition Bits Affected: 

S: Set if input data is negative; reset otherwise 
Z: Set if input data is zero; reset otherwise 
H: Reset 

P /V: Set if parity is even; reset" otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of register C are 07H, the contents of register 
B are 10H, and the byte 7BH is available at the peripheral 
device mapped to 1/0 port address 07H, then after the 
execution of 

IN D,(C) 

register D will contain 7BH 



INI 
Operation: (HL) +- (C), B +--8-1, HL +- HL + 1 

Format: 

Opcode 

INI 

j1'.1'.1:o:1:1:o'.1l rn 

I 1 : 0 > : 0 : 0 : 0 > : 0 I A2 

Description: 

The contents of register C are placed on the bottom half 
(Af/J through A7) of the address bus to select the I/0 device 
at one of 256 possible ports. Register B may be used as a 
byte counter, and its contents are placed on the top half 
(A8 through Al 5) of the address bus at this time. Then one 
byte from the selected port is placed on the data bus and 
written to the CPU. The contents of the HL register pair are 
then placed on the address bus and the input byte is written 
into the corresponding location of memory. Finally the byte 
counter is decremented and register pair HL is incremented. 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.0(/J 

Condition Bits Affected: 

S: Unknown 
Z: Set if B--1 =(/J; reset otherwise 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register Care (/J7H, the contents of register 
B are 1 (/JH, the contents of the HL register pair are I 0(/J0H, 
and the byte 7BH is available at the peripheral device 
mapped to I/0 port address (/J7H, then after the execution of 

INI 

memory location 1(/J(/J(/JH will contain 7BH, the HL register 
pair will contain 1(/J(/JlH, and register B will contain (/JFH. 

99 



INIR 
Operation: (HL) ,. ... (C), B .;.-"' 8-1, HL ..;,.. HL + 1 

Format: 

Opcode_ 

INIR 

[1 :> > : 0 > > : 0 : 1 I ED 

~ > ;i > :a : 0 > : 0 ] B2 

DescriAfion: 

The contents of register C are placed on .the bottom half 
(Aq) through Al) of the address bus to select the I/0 device 
at one of 256 possible ports. Register Bis used as a byte 
counter, and its contents are placed on the top half (AS 
through A 15) of the address bus at this time. Then one byte 
from the selected port is placed on the data bus and written 
to the CPU. The contents of the HL register pair are placed 
on the address bus and the input byte is written into the 
corresponding location of memory. Then register pair HL is 
incremented, the byte counter is decremented. If decrement­
ing causes B to go to zero, the instruction is terminated. If 
Bis not zero, the PC is decremented by two and the 
instruction repeated. Note that if Bis set to zero prior to 
instruction execution, 256 bytes of data will be input. Also 
interrnpts will be recognized after each data transfer. 

If B:f:0: 

M CYCLES: 5 T STATES: 21 (4,5,3,4,5) 4 MHZ E.T.: 5.25 

If B:::.0: 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are (p7H, the contents of register 
Bare 03H, the contents of the HL register pair are 10q)0H, 
and the following sequence of bytes are available at the peri­
pheral device mapped to I/0 port of address 07H: 

51H 
A9H 
r,BH 

100 

then after the execution of 

INIR 

the HL register pair will contain 100JH, register B will 
contain zero, and memory locations will have contents as 
follows: 

Location Contents 

1000H 
1001H 
1002H 

51H 
A9H 
(bJH 



IND 
Operation: (HL) +- (C), B +- B-1, HL +- HL-1 

Format: 

Opcode 

IND 

j1;i;i:0;1;i:o:11 ED 

I 1 : 0 > : 0 > : 0 > : 0 I AA 

Description: 

The contents of register C are placed on the bottom half 
(A(/J through A7) of the address bus to select the I/0 device 
at one of 256 possible ports. Register B may be used as a 
byte counter, and its contents are placed on the top half(A8 
through Al 5) of the address bus at this time. Then one byte 
from the selected port is placed on the data bus and written 
to the CPU. The contents of the HL register pair are placed 
on the address bus and the input byte is written into the 
corresponding location of memory. Finally the byte counter 
and register pair HL are decremented. 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.(/J(/J 

Condition Bits Affected: 

S: Unknown 
Z: Set if B--1 =(/); reset othernise 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are (/J7H, the contents of register 
Bare 1(/JH, the contents of the HL register pair are 1(/J(/J(/JH, 
and the byte 7BH is available at the peripheral device 
mapped to 1/0 port address (/J7H, then after the execution of 

IND 

memory location 1(/J(/J(/JH will contain 7BH, the HL register 
pair will contain (/JFFFH, and register B will contain (/JFH. 

101 



INDR 
Ope~tjQ11: (HL) +- (C), B +- B-1, HL +-HL-1 

INDR 

I 1 > : 1 : 0 : 1 : .1 : 0 : 1 I ED 

I 1 : 0 : 1 : 1 : 1 : 0 :i : 0 I BA 

Description: 

The contents of register C are placed on the bottom half 
(A$ through A 7) of the address bus to select the I/0 device 
at one of 256 possible ports. Register B is used as a byte 
counter, and its contents are placed on the top half (A8 
through Al 5) of the address bus at this time. Then one 
byte from the selected port is placed on the data bus and 
written to the CPU. The contents of the HL register pair 
are placed on the address bus and the input byte is written 
into the corresponding location of memory. Then HL and 
the byte counter are decremented. If decrementing causes B 
to go to zero, the instruction is terminated. If Bis not zero, 
the PC is decremented by two and the instruction repeated. 
Note that if B is set to zero prior to instruction execution, 
256 bytes of data will be input. Also interrupts will be 
recognized after each data transfer. 

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25 

IfB=0: 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are 9)7H, the contents of register 
Bare q)3H, the contents of the HL register pair are 1000H, 
and the following sequence of bytes are available at the peri­
pheral device mapped to I/0 port address {ft7H: 

51H 
A9H 
q)3H 

102 

then after the execution of 

INDR 

the HL register pair will contain 0FFDH, register B will 
contain zero, and memory locations willhave contents as 
follows: 

Location Contents 

0FFEH 
0FFFH 
1000H 

03H 
A9H 
51H 



OUT (n), A 
Operation: (n) +- A 

Format: 

Opcode Operands 

OUT (n) ,A 

1 1 ;i : a : 1 : o : a : 1 : 1 1 03 

I : : : n : : : : I 
Description: 

The operand n is placed on the bottom half ( A0 through A 7) 
of the address bus to select the 1/0 device at one of 256 
possible ports. The contents of the Accumulator (register A) 
also appear on the top half (A8 through Al 5) of the address 
bus at this time. Then the byte contained in the Accumulator 
is placed on the data bus and written into the selected 
peripheral device. 

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75 

Condition Bits Affected: None 

Example: 

If the contents of the Accumulator are 23H, then after the 
execution of 

OUT .01H,A 

the byte 23H will have been written to the peripheral device 
mapped to 1/0 port address 01H. 

103 

OUT (D), r 
Operation: (C) +- r 

Format: 

Opcode Operands 

OUT (C),r 

I 1 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED 

lo:1~r~o:o:1l 

Description: 

The contents of register C are placed on the bottom half 
(A0 through A7) of the address bus to select the 1/0 device 
at one of 256 possible ports. The contents of Register B are 
placed on the top half ( A8 through Al 5) of the address 
bus at this time. Then the byte contained in register r is 
placed on the data bus and written into the selected 
peripheral device. Register r identifies any of the CPU 
registers shown in the following table, which also shows the 
corresponding 3-bit "r" field for each which appears in the 
assembled object code: 

Register !_ 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00 

Condition Bits Affected: None 

Example: 

If the contents of register C are 01 H and the contents of 
register D are 5AH, after the execution of 

OUT ( C), D 

the byte 5AH will have been written to the peripheral device 
mapped to 1/0 port address 01H. 



OUTI 
Operation: (C) +- (HL), B +- B-1, HL +-HL + 1 

Fonnat: 

Opcode 

OUTI 

11:1:1:0:1:1:0:11 ED 

I 1 : 0 : 1 : 0 : 0 : 0 : i: 1 I A3 

Description: 

The contents of the HL register pair are placed on the 
address bus to select a location in memory. The byte 
contained in this memory location is temporarily stored in 
the CPU. Then, after the byte counter (B) is decremented, 
the contents of register C are placed on the bottom half (A(/J 
through A 7) of the address bus to select the 1/0 device at 
one of 256 possible ports. Register B may be used as a byte 
counter, and its decremented value is placed on the top half 
(A8 through A15) of the address bus. The byte to be output 
is placed on the data bus and written into selected peripheral 
device. Finally the register pair HL is incremented. 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.(/J(/J 

C-0ndition Bits Affected: 

S: Unknown 
Z: Set if B-1 =(/J; reset otherwise 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are (/J7H, the contents of register 
B are 1 (/JH, the contents of the HL register pair are 1 </J(/J</JH, 
and the contents of memory address 1(/J</J(/JH are 59H, then 
after the execution e>f 

OUTI 

register B will contain (/JFH, the HL register pair will contain 
1(/J(/JlH, and the byte 59H will have been written to the 
peripheral device mapped to 1/0 port address (/J7H. 

104 



OTIR 
Operation: (C)'~ (HL), B ~ B-1, HL ~ HL + 1 

Format: 

Opcode 

OTIR 

li'.i'.i'.o:i'.i'.0:11 
f i'.o:i'.i'.o:a:i'.11 

Description: 

ED 

B3 

The contents of the HL register pair are placed on the 
address bus to select a location in memory. The byte 
contained in this memory location is temporarily stored in 
the CPU. Then, after the byte counter (B) is decremented, 
the contents of register C are placed on the bottom half (A'/J 
through A7) of the address bus to select the 1/0 device at 
one of 256 possible ports. Register B may be used as a byte 
counter, and its decremented value is placed on the top half 
A8 through Al 5) of the address bus at this time. Next the 
byte to be output is placed on the data bus and written into 
the selected peripheral device. Then register pair HL is 
incremented. If the decremented B register is not zero, the 
Program Counter (PC) is decremented by 2 and the 
instruction is repeated. If B has gone to zero, the instruction 
is terminated. Note that if Bis set to zero prior to instruction 
execution, the instruction will output 256 bytes of data. 
Also, interrupts will be recognized after each data transfer. 

If Bf'/): 

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25 

If B=(/J: 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MYZ E.T.: 4.(/J(/J 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are (/J7H, the contents of register 
B are (/J3H, the contents of the HL register pair are 1 (/J'/J'/JH, 
and memory locations have the following contents: 

105 

Location Contents 

51H 
A9H 
(/J3H 

then after the execution of 

OTIR 

the HL register pair will contain 1(/J(/J3H, register B will 
contain zero, and a group of bytes will have been written to 
the peripheral device mapped to 1/0 port address (/J7H in 
the following sequence: 

51H 
A9H 
(/J3H 



OUTD 
Operation: (C) +- (HL), B..,.. B-1, HL +- HL-1 

OUTD 

j1:i:1:a:i:1:o:11 ED 

I 1 : 0 : i: 0 : 1'. 0 : 1 : 1 I AB 

Description: 

The contents of the HL register pair are placed on the 
address bus to select a location in memory. The byte 
contained in this memory location is temporarily stored in 
the CPU. Then, after the byte counter (B) is decremented, 
the contents of register C are placed on the bottom half (A0 
through A 7) of the address bus to select the I/0 device at 
one of 256 possible ports. Register B may be used as a byte 
counter, and its decremented value is placed on the top half 
(A8 through Al 5) of the address bus at this time. Next the 
byte to be output is placed on the data bus and written into 
the selected peripheral device. Finally the register pair HL is 
incremented. 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00 

Condition Bits Affected: 

S: Unknown 
Z: Set if B-1 =</J; reset otherwise 
H: Unknown 

P/V: Unknown 
N: Set 
C: Not affected 

Example: 

If the contents of register C are 07H, the contents of register 
Bare I 0H, the contents of the HL register pair are 1000H, 
and the contents of memory location 1000H are 59H, after 
the execution of 

OUTD 

register B will contain 0FH, the HL register pair will contain 
0FFFH, and the byte 59H will have been written to the 
peripheral device mapped to I/0 port address 07H. 

106 



OTDR 
Operation: (C) +- (HL), B +- B-1, HL +- HL-1 

Format: 

Opcode 

OTDR 

li'.<i'.a'.<<0:11 
li'.o'.i'.i'.i'.o'.i'.11 

Description: 

ED 

BB 

The contents of the HL register pair are placed on the 
address bus to select a location in memory. The byte 
contained in this memory location is temporarily stored in 
the CPU. Then, after the byte counter (B) is decremented, 
the contents of register C are placed on the bottom half (A(/J 
through A 7) of the address bus to select the I/0 device at 
one of 256 possible ports. Register B may be used as a byte 
counter, and its decremented value is placed on the top half 
(A8 through Al 5) of the address bus at this time. Next the 
byte to be output is placed on the data bus and written into 
the selected peripheral device. Then register pair HL is 
decremented and if the decremented B register is not zero, 
the Program Counter (PC) is decremented by 2 and the 
instruction is repeated. If B has gone to zero, the instruction 
is terminated. Note that if B is set to zero prior to instruction 
execution, the instruction will output 256 byte of data. Also, 
interrupts will be recognized after each data transfer. 

IfBjO: 

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25 

If B=(3: 

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.(/J(/J 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 

P/V: Unknown 
N: Set 
C Not affected 

Example: 

If the contents of register C are (/J7H, the contents of register 
Bare (/J3H, the contents of the HL register pair are 1(/J'/J'/JH, 
and memory locations have the following contents: 

107 

Location Contents 

(/JFFEH 
(/JFFFH 
1(/J'/J(/JH 

51H 
A9H 
(/J3H 

then after the execution of 

OTDR 

the HL register pair will contain (/JFFDH, register B will 
contain zero, and a group of bytes will have been written 
to the peripheral device mapped to I/0 port address (/J7H 
in the following sequence: 

(/J3H 
A9H 
51H 



Z-80 Hardware Configuration 

This section gives information about the actual 280 chip. 

Z-80 CPU ARCHITECTURE 

A block diagram of the internal architecture of the Z-80 CPU 
is shown in Figure l. The diagram shows all of the major 
elements in the CPU and it should be referred to throughout 
the following description. 

13 
CPU A!\10 
SYSTEM 
CONTROL 
SIGNAL$ 

INSTRUCTION 
DECODE 

" CPU 
CONTROL 

_./'I-- INSl. 
"-.r- REG 

CPU 
CONTROL 

iii 
+5V GNO ,1, 

Z-80 CPU BLOCK DIAGRAM 
FIGURE 1 

CPU REGISTERS 

ALU 

The Z-80 CPU contains 2(/)8 bits of R/W memory that are 
accessible to the programmer. Figure 2 illustrates how this 
memory is configured into eighteen 8-bit registers and four 
16-bit registers. All Z-80 registers are implemented using 
static RAM. The registers include two sets of six general 
purpose registers that may be used individually as 8-bit 
registers or in pairs as 16-bit registers. There are also two 
sets of accumulator and flag resistors. 

Special Purpose Registers 

1. Program Counter (PC). The program counter holds the 
16-bit address of the current instruction being fetched 
from memory. The PC is automatically incremented after 
its contents have been transferred to the address lines. 
When a program jump occurs the new value is automa­
tically placed in the PC, overriding the incrementer. 

2. Stack Pointer (SP). The stack pointer holds the 16-bit 
address of the current top of a stack located anywhere in 
external system RAM memory. The external stack 
memory is organized as a last-in first-out (LIFO) file. 

108 

Data can be pushed onto the stack from specific CPU 
registers or popped off of the stack into specific CPU 
registers through the execution of PUSH and POP 
instructions. The data popped from the stack is always the 
last data pushed onto it. The stack allows simple 
implementation of multiple level interrupts, unlimited 
subroutine nesting and simplification of many types of 
data manipulation. 

MAIN A:EG SET ALTERNATE REG SET 
A 

" 
ACCUMULATOR FLAGS ACCUMULATOR 

A F A' 

B C B' 

D E o· 

H l H' 

INTERRUPT I MEMORY 
VECTOR REFRESH 
I R 

INDEX REGISTER IX 

INDEX REGISTER IV 

ST ACK POINTER SP 

PROGRAM COUNTER PC 

" 

> 

FLAGS 
F' 

c· 

E' 

l' 

SPECIAL 
PURPOSE 
REGISTERS 

} 

GENERAL 
PURPOSE 
REGISTERS 

Z-80 CPU REGISTER CONFIGURATION 
FIGURE 2 

3. Two Index Register (IX & IY). The two independent 
index registers hold a 16-bit base address that is used in 
indexed addressing modes. In this mode, an index register 
is used as a base to point to a region in memory from 
which data is to be stored or retrieved. An additional byte 
is included in indexed instructions to specify a displace­
ment from this base. This displacement is specified as a 
two's complement signed integer. This mode of addressing 
greatly simplifies many types of programs, especially 
where tables of data are used. 

4. Interrupt Page Address Register (I). The Z-80 CPU can 
be operated in a mode where an indirect call to any 
memory location can be achieved in response to an 
interrupt. The I Register is used for this purpose to store 
the high order 8-bits of the indirect address while the 
interrupting device provides the lower 8-bits of the 
address. This feature allows interrupt routines to be 
dynamically located anywhere in memory with absolute 
minimal access time to the routine. 

5. Memory Refresh Register (R). The Z-80 CPU contains a 
memory refresh counter to enable dynamic memories to 
be used with the same ease as static memories. Seven bits 
of this 8 bit register are automatically incremented after 
each instruction fetch. The eighth bit will remain as pro­
grammed as the result of an LD R, A instruction. The 
data in the refresh counter is sent out on the lower portion 
of the address bus along with a refresh control signal while 



the CPU is decoding and executing the fetched instruction. 
This mode of refresh is totally transparent to the pro­
grammer and does not slow down the CPU operation. 
The programmer can load the R register for testing 
purposes, but this register is normally not used by the 
programmer. During refresh, the contents of the I register 
are placed on the upper 8 bits of the address bus. 

Accumulator and Flag Registers 

The CPU includes two independent 8-bit accumulators and 
associated 8-bit flag registers. The accumulator holds the 
results of 8-bit arithmetic or logical operations while the flag 
register indicates specific conditions for 8 or 16-bit opera­
tions, such as indicating whether or not the result of an 
operation is equal to zero. The programmer selects the 
accumulator and flag pair that he wishes to work with a 
single exchange instruction so that he may easily work with 
either pair. 

General Purpose Registers 

There are two matched sets of general purpose registers, each 
set containing six 8-bit registers that may be used 
individually as 8-bit registers or as 16-bit register pairs by the 
programmer. One set is called BC, DE and HL while the 
complementary set is called BC', DE and HL'. At any one 
time the programmer can select either set of registers to work 
with through a single exchange command for the entire set. 
In systems where fast interrupt response is required, one 
set of general purpose registers and an accumulator/flag 
register may be reserved for handling this very fast routine. 
Only a simple exchange command need be executed to go 
between the routines. This greatly reduces interrupt service 
time by eliminating the requirement for saving and retrieving 
register contents in the external stack during interrupt or 
subroutine processing. These general purpose registers are 
used for a wide range of applications by the programmer. 
They also simplify programming, especially in ROM based 
systems where little external read/write memory is available. 

ARITHMETIC & LOGIC UNIT (ALU) 

The 8-bit arithmetic and logical instructions of the CPU are 
executed in the ALU. Internally the ALU communicates 
with the registers and the external data bus on the internal 
data bus. The type of functions performed by the ALU 
include: 

Add Left or right shifts or rotates (arithmetic 
and logical) 

Subtract Increment 

Logical AND Decrement 

Logical OR Set bit 

Logical Exclu- Reset bit 
sive OR 
Compare Test bit 

INSTRUCTION REGISTER AND CPU CONTROL 

As each instruction is fetched from memory, it is placed in 

109 

the instruction register and decoded. The control sections 
performs this function and then generates and supplies all 
of the control signals necessary to read or write data from or 
to the registers, control the ALU and provide all required 
external control signals, 

Z-80 CPU PIN DESCRIPTION 

The Z-80 CPU is packaged in an industry standard 40 pin 
Dual In-Line Package. The 1/0 pins are shown in Figure 3 
and the function of each is described below. 

;;;-, 
MREO 

SYSTEM ioRa 
CONTROL Ali 

WR 

AFSH 

HALT 

WAIT 
Cl'U 
CONTROL INT 

NMI 

RESIT 

Cl'U {BUsRo 
BUS 
CONTROL BUSAK 

<I> 

+5V 

GND 

,¼-A15 
(Address Bus) 

D0-D7 
(Data Bus) 

Mt 
(Machine Cycle 
one) 

27 

28 

18 

24 

Z-80 CPU 

ADDRESS 
BUS 

Z-80 PIN CONFIGURATION 
FIGURE3 

Tri-state output, active high. ¼·A15 
constitute a 16-bit address bus. The address 
bus provides the address for memory (up 
to 64K bytes) data exchanges and for 1/0 
device data exchanges. 1/0 addressing uses 
the 8 lower address bits to allow the user 
to directly select up to 256 input or 256 
output ports. ~ is the least significant 
address bit. Dunng refresh time, the lower 
7 bits contain a valid refresh address. 

Tri-state input/output, active high. D0-D7 
constitute an 8-bit bidirectional data bus. 
The data bus is used for data exchanges 
with memory and 1/0 devices. 

Output, active low. Mt indicates that the 
current machine cycle is the OP code 
fetch cycle of an instruction execution. 
Note that during execution of 2-byte 
op-codes, M 1 is generated as each op-code 
byte is fetched. These two byte op-codes 
always begin with CBH, DOH, EDH or 
FDH. M 1 also occurs with IORQ to 
indicate an interrupt acknowledge cycle. 



MRf:Q 
(Memory 
Request) 

fORQ 
(Input/ 
Output 
Request) 

RD 
(Memory Read) 

WR 
(Memory Write) 

RFSH 
(Refresh) 

HALT 
(Halt state) 

WAIT° 
(Wait) 

INT 
(Interrupt 
Request) 

Tri-state output, active low. The memory 
request signal indicates that the address 
bus holds a valid address for a memory 
read or memory write operation. 

Tri-state output, active low. The IORQ 
signal indicates that the lower half of the 
address bus holds a valid 1/0 address 
for a 1/0 read or write operation. AnIORQ 
signal is also generated with an MT signal 
when an interrupt is being acknowledged 
to indicate that an interrupt response vector 
can be placed on the data bus. Interrupt 
Acknowledge operations occur during M 1 
time while I/0 operations never occur during 
Mi time. 

Tri-state output, active low. i~D indicates 
that the CPU wants to read data from 
memory or an 1/0 device. The addressed 
1/0 device or memory should use this 
signal to gate data onto the CPU data bus. 

Tri-state output, active low. WR indicates 
that the CPU data bus holds valid data to 
be stored in the addressed memory or I/0 
device. 

Output, active low. RFSH indicates that the 
lower 7 bits of the address bus contain a 
refresh address for dynamic memories and 
the current MREQ- signal should be used to 
do a refresh read to all dynamic memories. 

Output, active low. HALT indicates that 
the CPU has executed a HALT software 
instruction and is awaiting either a non 
maskable or a maskable interrupt (with the 
mask enabled) before operation can 
resume. While halted, the CPU executes 
NOP's to maintain memory refresh 
activity. 

Input, active low. WAIT indicates to the 
Z-80 CPU that the addressed memory or 
1/0 devices are not ready for a data 
transfer. The CPU continues to enter wait 
states for as long as this signal is active. 
This signal allows memory or 1/0 devices 
of any speed to be synchronized to the 
CPU. 

Input, active low. The Interrupt Request 
signal is generated by I/0 devices. A 
request will be honored at the end of the 
current instruction if the internal software 
controlled interrupt enable flip-flop (IFF) 
is enabled and if the BUSRQ signal is not 
active. When the CPU accepts the 
interrupt, an. acknowledge signal (IORQ 
during MI time) is sent out at the 
beginning of the next instruction cycle. 

110 

NMI 
(Non 
Maskable 
Interrupt) 

BUSRQ 
(Bus Request) 

BUSAK 
(Bus 
Acknowledge) 

Input, negative edge triggered. The non 
maskable interrupt request line has a higher 
priority than i:Nr and is always recognized 
at the end of the current instruction, 
independent of the status of the interrupt 
enable flip-t1op. NJ\iH automatically forces 
the Z-80 CPU to restart to location (/Jip661-I• 
The program counter is automatically 
saved in the external stack so that the user 
can return to the program that was 
interrupted. Note that continuous WAIT 
cycles can prevent the current instruction 
from ending, and that a BUSRQ will 
override a NM I: 

Input, active low. RESET forces the 
program counter to zero and initializes 
the CPU. The CPU initialization includes: 

I) Disable the interrupt enable flip-flop 
2) Set Register I = 00H 
3) Set Register R = (/J'PH 
4) Set Interrupt Mode (/J 

During reset time, the address bus and data 
bus go to a high impedance state and all 
control output signals go to the inactive 
state. 

Input, active low. The bus request signal 
is used to request the CPU address bus, 
data bus and tri-state output control 
signals to go to a high impedance state so 
that other devices can control these buses. 
When BUSRQ is activated, the CPU will 
set these buses to a high impedance state 
as soon as the current CPU machine cycle 
is terminated. 

Output, active low. Bus acknowledge is 
used to indicate to the requesting device 
that the CPU address bus, data bus and tri­
state control bus signals have been set to 
their high impedance state and the external 
device can now control these signals. 

Single phase TTL level clock which 
requires only a 33(/J ohm pull-up resistor 
to +5 volts to meet all clock requirements. 

Z-80 CPU INSTRUCTION SET 

The Z-80 CPU can execute 158 different instruction types 
including all 78 of the 8080A CPU. The instructions can be 
broken down into the following major groups: 

• Load and Exchange 
• Block Transfer and Search 
• Arithmetic and Logical 
• Rotate and Shift 
• Bit Manipulation (set, reset, test) 
• Jump, Call and Return 
• Input/Output 
• Basic CPU Control 



INTRODUCTION TO INSTRUCTION TYPES 

The load instructions move data internally between CPU 
registers or between CPU registers and external memory. 
All of these instructions must specify a source location from 
which the data is to be moved and a destination location. The 
source location is not altered by a load instruction. Examples 
of load group instructions include moves between any of the 
general purpose registers such as move the data to Register 
B from Register C. This group also includes load immediate 
to any CPU register or to any external memory location. 
Other types of load instructions allow transfer between CPU 
registers and memory locations. The exchange instructions 
can trade the contents of two registers. 

A unique set of block transfer instructions is provided in the 
Z-80. With a single instruction a block of memory of any size 
can be moved to any other location in memory. This set of 
block moves is extremely valuable when large strings of data 
must be processed. The Z-80 block search instructions are 
also valuable for this type of processing. With a single instruc­
tion, a block of external memory of any desired length can 
be searched for any 8-bit character. Once the character is 
found or the end of the block is reached, the instruction 
automatically terminates. Both the block transfer and the 
block search instructions can be interrupted during their 
execution so as to not occupy the CPU for long periods of 
time. 

The arithmetic and logical instructions operate on data 
stored in the accumulator and other general purpose CPU 
registers or external memory locations. The results of the 
operations are placed in the accumulator and the appropriate 
flags are set according to the result of the operation. An 
example of an arithmetic operation is adding the 
accumulator to the contents of an external memory location. 
The results of the addition are placed in the accumulator. 
This group also includes 16-bit addition and subtraction 
between 16-bit CPU registers. 

The rotate and shift group allows any register or any memory 
location to be rotated right or left with or without carry 
either arithmetic or logical. Also, a digit in the accumulator 
can be rotated right or left with two digits in any memory 
location. 

The bit mani;IJulation instructions allow any bit in the 
iccumulator, any general purpose register or any external 
memory location to be set, reset or tested with a single 
instruction. For example, the most significant bit of register 
H can be reset. This group is especially useful in control 
applications and for controlling software flags in general 
purpose programming. 

The jump, call and return instructions are used to transfer 
between various locations in the user's program. This group 
uses several different techniques for obtaining the new 
program counter address from specific external memory 
locations. A unique type of call is the restart instruction. 
This instruction actually contains the new address as a part 
of the 8-bit OP code. This is possible since only 8 separate 
addresses located in page zero of the external memory may 
be specified. Program jumps may also be achieved by loading 
register HL, IX or IY directly into the PC, thus allowing the 
jump .address to be a complex function of the routine being 
executed. 

111 

The input/output group of instructions in the Z-80 allow for 
a wide range of transfers between external memory locations 
or the general purpose CPU registers, and the external 1/0 
devices. In each case, the port number is provided on the 
lower 8 bits of the address bus during any 1/0 transaction. 
One instruction allows this port number to be specified by 
the second byte of the instruction while other Z-80 instruc­
tions allow it to be specified as the content of the C register. 
One major advantage of using the C register as a pointer to 
the 1/0 device is that it allows different 1/0 ports to share 
common software driver routines. This is not pgssible when 
the address is part of the OP code if the routines are stored 
in ROM. Another feature of these input instructions is that 
they set the flag register automatically so that additional 
operations are not required to determine the state of the 
input data (for example its parity). The Z-80 CPU includes 
single instructions that can move blocks of data (up to 256 
bytes) automatically to or from any 1/0 port directly to any 
memory location. In conjunction with the dual set of general 
purpose registers, these instructions provide for fast 1/0 
block transfer rates. The value of this 1/0 instruction set is 
demonstrated by the fact that the Z-80 CPU can provide all 
required floppy disk formatting (i.e., the CPU provides the 
preamble, address, data and enables the CRC codes) on 
double density floppy disk drives on an interrupt driven 
basis. 

Finally, the basic CPU control instructions allow various 
options and modes. This group includes instructions such as 
setting or resetting the interrupt enable flip flop or setting 
the mode of interrupt response. 

ADDRESSING MODES 

Most of the Z-80 instructions operate on data stored in 
internal CPU registers, external memory or in the 1/0 ports. 
Addressing refers to how the address of this data is generated 
in each instruction. This section gives a brief summary of the 
types of addressing used in the Z-80 while subsequent 
sections detail the type of addressing available for each 
instruction group. 

Immediate. In this mode of addressing the byte following the 
OP code in memory contains the actual operand. 

OP Code } one or 2 bytes 

Operand 

Examples of this type of instruction would be to load the 
accumulator with a constant, where the constant is the byte 
immediately following the OP code. 

Immediate Extended. This mode is merely an extension of 
immediate addressing in that the two bytes followmg the OP 
codes are the operand. 

OP code one or 2 bytes 

Operand low order 

Operand high order 



Examples of this type of instruction would be to load the 
HL register pair (16-bit register) with 16 bits (2 bytes) of 
data. 

Modified Page Zero Addressing. The Z-80 has a special single 
byte CALL instruction to any of 8 locations in page zero of 
memory. This instruction (which is referred to as a restart) 
sets the PC to an effective address in page zero. The value of 
this instruction is that it allows a single byte to specify a 
complete 16-bit address where commonly called subroutines 
are located, thus saving memory space. 

I OP Code I one byte 
b b 
7 O Effective address is (b5 b4 b3 000)2 

Relative Addressing. Relative addressing uses one byte of 
data following the OP code to specify a displacement from 
the existing program to which a program jump can occur. 
This displacement is a signed two's complement number 
that is added to the address of the OP code of the following 
instruction. 

1--0_P_C_o_d_e-1} Jump relative (one byte OP code) 

Operand 8-bit two's complement displacement added 

to Address (A+2) 

The value of relative addressing is that it allows jumps to 
nearby locations while only requiring two bytes of memory 
space. For most programs, relative jumps are by far the most 
prevalent type of jump due to the proximity of related 
program segments: Thus, these instructions can s!gnificantly 
reduce memory space requirements. The signed displacement 
can range between +127 and -128 from A+ 2. This allows for 
a total displacement of+ 129 to -126 from the jump relative 
OP code address. Another major advantage is that it allows 
for relocatable code. 

Extended Addressing. Extended Addressing provides for two 
bytes (16 bits) of address to be included in the instruction. 
This data can be an address to which a program can jump or 
it can be an address.where an operand is located. 

.... o_P_C_o_d_e _____________ } one or two bytes 

Low Order Address or Low order operand 

High Order Address or high order operand 

Extended addressing is required for a program to jump from 
any location in memory to any other location, or load and 
store data in any memory location. 

When extended addressing is used to specify the source or 
destination address of an operand, the notation (nn) will be 
used to indicate the content of memory at nn, where nn is 
the 16-bit address specified in the instruction. This means 
that the two bytes of address nn are used as a pointer to a 
memory location. The use of the parentheses always means 
that the value enclosed within them is used as a pointer to a 
memory location. For example, (12<M)) refers to the contents 
of memory at location 12(/J</J. 

112 

Indexed Addressing. In this type of addressing, the byte of 
data following the OP code cont~s a displacement which is 
added to one of the two index registers (the OP code 
specifies which index register is used) to form a pointer to 
memory. The contents of the index regisJer are not altered 
by this operation. 

--------1 two byte OP code 
OP Code } 

OP Code 

Displacement Operand added to index register to form 
a pointer to memory. 

An example of an indexed instruction would be to load the 
contents of the memory location (Index Register+ Displace­
ment) into the accumulator. The displacement is a signed 
two's complement number. Indexed addressing greatly 
simplifies programs using tables of data since the index 
register can point to the start of any table. Two index 
registers are provided since very often operations require 
two or more tables. Indexed addressing also allows for 
relocatable code. 

The two index registers in the Z-80 are referred to as IX and 
IY. To indicate indexed addressing the notation: 

(IX+d) or (IY+d) 

is used. Here dis the displacement specified after the OP 
code. The parentheses indicate that this value is used as a 
pointer to external memory. 

Register Addressing. Many of the Z-80 OP codes contain bits 
of information that specify which CPU register is to be used 
for an operation. An example of register addressing would be 
to load the data in register B into register C. 

Implied Addressing. Implied addressing refers to operations 
where the OP code automatically implies one or more CPU 
registers as containing the operands. An example is this set 
of arithmetic operations where the accumulator is always 
implied to be the destination of the results. 

Register Indirect Addressing. This type of addressing 
specifies a 16-bit CPU register pair (such as HL) to be used as 
a pointer to any location in memory. This type of instruction 
is very powerful and it is used in a wide range of applications . 

j OP Code I} one or two bytes 

An example of this type of instruction would be to load the 
accumulator with the data in the memory location pointed 
to by the HL register contents. Indexed addressing is actually 
a form of register indirect addressing except that a displace­
ment is added with indexed addressing. Register indirect 
addressing allows for very powerful but simple to implement 
memory accesses. The block move and search commands in 
the Z-80 are extensions of this type of addressing where 
automatic register incrementing, decrementing and 
comparing has been added. The notation for indicating 
register indirect addressing is to put parentheses around the 
name of the register that is to be used as the pointer. For 

-example, the symbol 

(HL) 



specifies that the contents of the HL register are to be used 
as a pointer to a memory location. Often register indirect 
addressing is used to specify 16-bit operands. In this case, the 
register contents point to the low order portion of the 
operand while the register contents are automatically incre­
mented to obtain the upper portion of the operand. 

Bit Addressing. The Z-80 contains a large number of bit set, 
reset and test instructions. These instructions allow any 
memory location or CPU register to be specified for a bit 
operation through one of three previous addressing modes 
(register, register indirect and index~d) while three bits in 
the OP code specify which of the eight bits is to be mani­
pulated. 

ADDRESSING MODE COMBINATIONS 

Many instructions include more than one operand (such as 
arithmetic instructions or loads). In these cases, two types of 
addressing may be employed. For example, load can use 
immediate addressing to specify the source and register 
indirect or indexed addressing to specify the destination. 

CPU TIMING 

The Z-80 CPU executes instructions by stepping through a 
very precise set of a few basic operations. These include :f 

Memory read or write 
1/0 device read or write 
Interrupt acknowledge 

All instructions are merely a series of these basic operations. 
Each of these basic operations can take from three to six 
clock periods to complete or they can be lengthened to 
synchronize the CPU to the speed of external devices. The 
basic clock periods are referred to as T cycles and the basic 
operations are referred to as M (for machine) cycles. Figure 4 
illustrates how a typical instruction will be merely a series of 
specific M and T cycles. Notice that this instruction consists 
of three machine cycles (Ml, M2 and M3). The first machine 
cycle of any instruction is a fetch cycle which is four, five or 
six T cycles long (unless lengthened by the wait signal which 
will be fully described in the next section). The fetch cycle 
(M 1) is used to fetch the OP code of the next instruction to 
be executed. Subsequent machine cycles move data between 
the CPU and memory or 1/0 devices and they may have any­
where from three to five T cycles (again they may be 
lengthened by wait states to synchronize the external devices 
to the CPU). The following paragraphs describe the timing 
which occurs within any of the basic machine cycles. In 
section 10, the exact timing for each instruction is specified. 

TCycle 

,,, 

Machine Cycle 

M1 
(OP Code Fetch) 

M2 
!Memory Read) 

Instruction Cycle 

M3 
!Memory Write) 

BASIC CPU TIMING EXAMPLE 
FIGURE4 

113 



NUMERIC LIST OF INSTRUCTION SET 
Z-80 CROSS ASSEMBLER VERSION J .06 OF 06/18/76 

07/09/76 10:20:50 OPCODE LISTING 
LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT 
0000 00 NOP 0065 47 72 LDB,A 
0001 ()18405 2 LO BC,NN 0066 48 73 LDC,B 
0004 02 3 LD (BC),A 0067 49 74 LDC,C 
0005 03 4 INC BC 0068 4A 75 LDC,D 
0006 04 5 INC B 0069 4B 76 LDC,E 
0007 05 6 DECB 006A 4C 77 LDC,H 
0008 0620 7 LDB,N 0068 4D 78 LDC,L 
000/\ 07 8 RLCA 006C 4E 79 LDC,(HL) ooon 08 9 EX AF,AF' 0061) 4F 80 LDC,A oooc 09 10 ADDHL,BC 006E 50 81 LDD,B 
000D 0A 11 LD A,(BC) 006F 51 82 LDD,C 
OOOf OB l2 DEC BC 0070 52 83 LDD,D 
OOOF oc 13 INCC 0071 53 84 LDD,E 
0010 OD 14 DECC 0072 54 85 LDD,H 
()()JI 0E20 15 LDC,N 0073 55 86 LDD,L 
0013 OF 16 RRCA 0074 56 87 LD D,(HL) 
0014 102E J 7 DJNZ DIS 0075 57 88 LDD,A 
0016 118405 18 LDDE,NN 0076 58 89 LDE,B 
0019 12 1.9 LD (DE),A 0077 59 90 LDE,C 
001A l3 20 INC DE 0078 5A 91 LDE,D oorn 14 21 INC D 0079 SB 92 LDE,E 
00JC 15 22 DECD 007A SC 93 LDE,H 
00JD 1620 23 LDD,N 007B SD 94 LDE,L 00JF 17 24 RLA 007C SE 95 LD E,(HL) 
0020 l82E 25 JR DIS 007D SF 96 LDE,A 0022 19 26 ADDHL,Db 007E 60 97 LDH,B 
0023 IA 27 LD A,(DE) 007F 61 98 LDH,C 
0024 IB 28 DEC DE 0080 62 99 LDH,D 
0025 lC 29 INCE 0081 63 100 LDH,E 
0026 JD 30 DECE 0082 64 101 LDH,H 
0027 1E20 31 LDE,N 0083 65 102 LDH,L 
0029 lF 32 RRA 0084 66 103 LD H,(HL) 
002A 202E 33 JR NZ,DlS 0085 67 104 LDH,A 
002C 218405 34 LDHL,NN 0086 68 105 LDL,B 
002F 228405 35 LD (NN),HL 0087 69 106 LDL,C 
0032 23 36 INCHL 0088 6A 107 LDL.D 
0033 24 37 INCH 0089 6B 108 LDL,E 
0034 25 38 DECH 008A 6C 109 LDL,H 
0035 2620 39 LDH,N 008B 6D 110 LDL,L 
0037 27 40 DAA 008C 6E 111 LD L,(HL) 
0038 282E 41 JR Z,DIS 008D 6F 112 LDL,A 
003A 29 42 ADDHL,HL 008E 70 113 LD (HL),B 
003B 2A8405 43 LD HL,(NN) 008F 71 114 LD (HL),C 
003E 2B 44 DECHL 0090 72 115 LD (HL),D 
003F 2C 45 INCL 0091 73 116 LD (HL),E 
0040 2D 46 DECL 0092 74 117 LD (HL),H 
0041 2E20 47 LDL,N 0093 75 118 LD (HL),L 
0043 2F 48 CPL 0094 76 119 HALT 
0044 302E 49 JR NC,DIS 0095 77 120 LD (HL),A 
0046 318405 50 LD SP,NN 0096 78 121 LDA,B 
0049 328405 51 LD (NN),A 0097 79 122 LDA,C 
004C 33 52 INC SP 0098 7A 123 LDA,D 
004D 34 53 INC (HL) 0099 7B 124 LDA,E 
004E 35 54 DEC (IIL) 009A 7C 125 LDA,H 
004F 3620 55 LD (HL),N 009B 7D 126 LDA,L 
0051 37 56 SCF 009C 7E 127 LD A,(HL) 
0052 382E 57 JR C,DIS 009D 7F 128 LDA,A 0054 39 58 ADDHL,SP 009E 80 129 ADDA,B 0055 3A8405 59 LD A,(NN) 009F 81 130 ADD A,C 0058 3B 60 DEC SP 00A0 82 131 ADDA,D 0059 3C 61 INC A 00Al 83 132 ADD A,E 00SA 3D 62 DECA 00A2 84 133 ADD A,H O0SB 3E20 63 LDA,N 00A3 85 134 ADD A,L 00SD 3F 64 CCF 00A4 86 135 ADD A,(HL) 
005E 40 65 LDB,B 00AS 87 136 ADDA,A 
005F 41 66 LDB,C 00A6 88 137 ADC A,B 
0060 42 67 LDB,D 00A7 89 138 ADC A,C 
0061 43 68 LDB,E 00A8 BA 139 ADC A,D 
0062 44 69 LDB,H,NN 00A9 8B 140 ADC A,E 
0063 45 70 LD B,L 00AA BC 141 ADC A,H 
0064 46 71 LD B,(HL) 00AB 8D 142 ADC A,L 

114 



Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 
07/09/76 10:20:50 OPCODE LISTING 
LOC OBJ CODE STMTSOURCESTATEMENT LOC OBJCODE STMT SOURCE STATEMENT 
00AC 8E 143 ADC A,(HL) 0l0B DA8405 218 JP C,NN 
00AD 8F 144 ADC A,A 0lOE DB20 219 IN A,N 
00AE 90 145 SUB B 0110 DC8405 220 CALLC,NN 
00AF 91 146 SUBC 0113 DE20 221 SBC A,N 
00B0 92 147 SUBD 0115 DF 222 RST 18H 
00Bl 93 148 SUBE 0116 E0 223 RETPO 
00B2 94 149 SUBH 0117 El 224 POPHL 
00B3 95 150 SUBL 0118 E28405 225 JP PO,NN 
00B4 96 151 SUB (HL) 011B E3 226 EX (SP),HL 
00BS 97 152 SUBA 0llC E48405 227 CALLPO,NN 
00B6 98 153 SBC A,B 0llF ES 228 PUSH HL 
00B7 99 154 SBC A,C 0120 £620 229 ANDN 
00B8 9A 155 SBC A,D 0122 E7 230 RST 20H 
00B9 9B 156 SBC A,E 0123 ES 231 RETPE 
00BA 9C 157 SBC A,H 0124 E9 232 JP (BL) 
00BB 9D 158 SBC A,L 0125 EA8405 233 JP PE,NN 
00BC 9E 159 SBC A,(HL) 0128 EB 234 EX DE,HL 
00BD 9F 160 SBC A,A 0129 EC8405 235 CALL PE,NN 
O0BE AO 161 ANDB 012C EE20 236 XORN 
00BF Al 162 ANDC 012E EF 237 RST 28H 
ooco A2 163 ANDD 012F F0 238 RETP 
00Cl A3 164 ANDE 0130 Fl 239 POP AF 
00C2 A4 165 ANDH 0131 F28405 240 JP P,NN 
O0C3 A5 166 ANDL 0134 F3 241 DI 
00C4 A6 167 AND (HL) 0135 F48405 242 CALL P,NN 
oocs A7 168 ANDA 0138 F5 243 PUSH AF 
00C6 A8 169 XORB 0139 F620 244 ORN 
00C7 A9 170 XORC 013B F7 245 RST 30H 
00C8 AA 171 XOR D 013C F8 246 RETM 
00C9 AB 172 XORE 013D F9 247 LD SP,HL 
00CA AC 173 XORH 0l3E FA8405 248 JP M,NN 
00CB AD 174 XORL 0141 FB 249 El 
oocc AE 175 XOR (HL) 0142 FC8405 250 CALL M,NN 
00CD AF 176 XORA 0145 FE20 251 CP N 
00CE BO 177 ORB 0147 FF 252 RST 38H 
00CF Bl 178 ORC 0148 CB00 253 RLC B 
0000 B2 179 ORD 014A CB0l 254 RLCC 
00Dl B3 180 ORE 0l4C CB02 255 RLC D 
0002 B4 181 ORH 014E CB03 256 RLCE 
00D3 BS 182 ORL 0150 CB04 257 RLCH 
00D4 B6 183 OR (HL) 0152 CB05 258 RLC L 
00D5 B7 184 ORA 0154 CB06 259 RLC (HL) 
00D6 B8 185 CP B 0156 CB07 260 RLC A 
001)7 B9 186 CPC 0158 CB08 261 RRCB 
00D8 BA 187 CPD 015A CB09 262 RRCC 
00D9 BB 188 CP E 015C CB0A 263 RRCD 
00DA BC 189 CPH OISE CB0B 264 RRCE 
00DB BD 190 CPL 0160 CBOC 265 RRCH 
00DC BE 191 CP (HL) 0162 CB0D 266 RRC L 
00DD BF 192 CPA 0164 CBO:E 267 RRC OIL) 
00DE co 193 RETNZ 0166 CB0F 268 RRC A 
00DF Cl 194 POP BC 0168 CBI0 269 RL B 
00E0 C28405 195 JP NZ, NN 016A CBl 1 270 RLC 
00E3 C38405 196 JPNN 0l6C CB12 271 RL D 
00E6 C48405 197 CALLNZ,NN 016E CB13 272 RLE 
00E9 cs 198 PUSH BC 0170 CB14 273 RLH 
00EA C620 199 ADDA,N 0172 CB15 274 RL L 
00EC C7 200 RST0 0174 CB16 275 RL (HL) 
00ED C8 201 RETZ 0176 CB17 276 RL A 
00EE C9 202 RET 0178 CB18 277 RRB 
00EF CA8405 203 JP Z,NN 017A CB19 278 RRC 
00F2 CC8405 204 CALL Z,NN 0I7C CHIA 279 RR D 
00FS CD8405 205 CALLNN 017E CBIB 280 RR F 
00F8 CE20 206 ADC A,N 0180 CBIC 281 RRH 
00FA CF 207 RST 8 0182 CBlD 282 RRL 
00FB DO 208 RETNC 0184 CBlE 283 RR (HL) 
00FC DJ 209 POP DE 0186 CBlF 284 RRA 
O0FD D28405 210 JPNC,NN 0188 CB20 285 SLAB 
0100 D320 211 OUTN,A 018A CB21 286 SLAC 
0102 D48405 212 CALLNC,NN 018C CB22 287 SLAD 
0105 DS 213 POSH DE OISE Cll23 288 SLAE 
0106 D620 214 SUBN 0190 CB24 289 SLA H 
0108 D7 215 RST l0H 0192 CB25 290 SLA L 
0109 D8 216 RETC 0194 CB26 291 SLA (HL) 
010A D9 217 EXX 0196 CB27 292 SLA A 

115 



Z-80 CROSS ASSEMBLER VERSION 1.06 of 06/18/76 
07/09/76 l0:20:50 OPCODE LISTING 
LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJCODE STMTSOURCESTATEMENT 
0198 CB28 293 SRA B 0230 CB7C 369 BIT 7,H 
019A CB29 294 SRAC 0232 CB7D 370 BIT 7,L 
019C CB2A 295 SRAD 0234 CB7E 371 BIT 7,(HL) 
Ol9E CB2B 296 SRAE 0236 CB7F 372 BIT 7,A 
OlAO C82C 297 SRAH 0238 CB80 373 RES O,B 
OlA2 CB2D 298 SRAL 023A CB8l 374 RES O,C 
01A4 CB2F 299 SRA (HL) 023C CB82 375 RES 0,D 
01A6 CB2l' 300 SR.AA 023E CB83 376 RES O,E 
OlA8 CB38 301 SRLB 0240 CB84 377 RES O,H 
OlAA CB39 302 SRLC 0242 CB85 378 RES O,L 
OlAC CIBA 303 SRL D 0244 CB86 379 RES O,(HL) 
OlAE CH3B 304 SR.LE 0246 CB87 380 RES 0,A 
01BO CB3C 305 SRLH 0248 CB88 381 RES l,B 
01B2 CB3D 306 SRL L 024A CB89 382 RES 1,C 
01B4 CB3E 307 SRL (HL) 024C CB8A 383 RES l,D 
OJH6 CB3F 308 SRL A 024E CB8B 384 RES l,E 
01B8 CB40 309 BIT O,B 0250 CB8C 385 RES 1,H 
OlBA CB41 310 BIT O,C 0252 CB8D 386 RES 1,L 
OlBC CB42 311 BIT O,D 0254 CB8E 387 RES l,(HL) 
01HE CB43 312 BIT O,E 0256 CB8F 388 RES l,A 
OlCO CB44 313 BIT OJI 0258 CB90 389 RES 2,B 
01C2 CB45 314 BIT O,L 025A CB91 390 RES 2,C 
OIC4 CB46 315 BIT O,(HL) 025C CB92 391 RES 2,D 
OlC6 CB47 316 BIT 0,A 025E CB93 392 RES 2,E 
01C8 CB48 317 BIT J,B 0260 CB94 393 RES 2,H 
OlCA CB49 318 BIT 1,C 0262 CB95 394 RES 2,L 
01cc CB4A 319 BJT l,D 0264 CB96 395 RES 2,(HL) 
OlCE CB4B 320 BIT l,E 0266 CB97 396 RES 2,A 
OlDO CB4C 321 BIT 1,H 0268 CB98 397 RES 3,B 
OlD2 CB4D 322 BIT l,L 026A CB99 398 RES 3,C 
011)4 CB4E 323 BIT 1,(HL) 026C CB9A 399 RES 3,D 
01D6 CB4F 324 BIT l,A 026E CB9B 400 RES 3,E 
oms CBSO 325 BIT 2,B 0270 CB9C 401 RES 3,H 
OlDA CBS! 326 BIT 2,C 0272 CB9D 402 RES 3,L 
OlDC CB52 327 BIT 2.D 0274 CB9E 403 RES 3,(HL) 
OWE CB53 328 BIT 2,E 0276 CB9F 404 RES 3,A 
OlEO CB54 329 BIT 2,H 0278 CBAO 405 RES 4,B 
OlE2 CB55 330 BIT 2,L 027A CBAl 406 RES 4,C 
01E4 CB56 331 BIT 2,(HL) 027C CBA2 407 RES 4,D 
OJE6 CB57 332 BIT 2,A 027E CBA3 408 RES 4,E 
01E8 CB58 333 BIT 3,B 0280 CBA4 409 RES 4,H 
OlEA CB59 334 BIT 3,C 0282 CBA5 410 RES 4,L 
one CB5A 335 BIT 3,D 0284 CBA6 411 RES 4,(HL) 
OlEE CBSB 336 BIT 3,E 0286 CBA7 412 RES 4,A 
OlFO CBSC 337 BIT 3,H 0288 CBA8 413 RES 5,B 
01F2 CB5D 338 BIT 3,L 028A CBA9 414 RES 5,C 
01F4 CBSE 339 BIT 3,(HL) 028C CBAA 415 RES 5,D 
01F6 CB5F 340 BIT 3,A 028E CBAB 416 RES 5,E 
OlF8 CB60 341 BIT 4,B 0290 CBAC 417 RES 5,H 
01FA CB61 342 BIT 4,C 0292 CBAD 418 RES 5,L 
O!FC CB62 343 BIT 4,D 0294 CBAE 419 RES 5,(HL) 
OlFE CB63 344 BIT 4,E 0296 CBAF 420 RES 5,A 
0200 CB64 345 BIT 4,H 0298 CBBO 421 RES 6,B 
0202 CB65 346 BIT 4,L 029A CBBl 422 RES 6,C 
0204 CB66 347 BIT 4,(HL) 029C CBB2 423 RES 6,D 
0206 CB67 348 BIT 4,A 029E CBB3 424 RES 6,E 
0208 CB68 349 BIT 5,B 02AO CBB4 425 RES 6,H 
020A CB69 350 BIT 5,C 02A2 CBB5 426 RES 6,L 
020C CB6A 351 BIT 5,D 02A4 CBB6 427 RES 6,(HL) 
020E CB6B 352 BIT 5,E 02A6 CBB7 428 RES 6,A 
0210 CB6C 353 BIT 5,H 02A8 CBB8 429 RES 7,B 
0212 CB6D 354 BIT 5,L 02AA CBB9 430 RES 7,C 
0214 CB6E 355 BIT 5.(HL) 02AC CBBA 431 RES 7,D 
0216 CB6F 356 BIT 5,A 02AE CBBB 432 RES 7,E 
0218 CB70 357 BIT 6,B 0280 CBBC 433 RES 7,H 
021A CB71 358 BIT 6,C 0282 CBBD 434 RES 7,L 
021C CB72 359 BIT 6,D 0284 CBBE 435 RES 7,(HL) 
021E CB73 360 BIT 6,E 0286 CBBF 436 RES 7,A 
0220 CB74 361 BIT 6,H 0288 CBCO 437 SET O,B 
0222 CB75 362 BIT 6,L 02BA CBCl 438 SET O,C 
0224 CB76 363 BIT 6,(HL) 02BC CBC2 439 SET O,D 
0226 CB77 364 BIT 6,A 02BE CBC3 440 SET O,E 
0228 CB78 365 BIT 7,B 02CO CBC4 441 SET O,H 
022A CB79 366 B[T 7,C 02C2 CBC5 442 SET O,L 
022C CB7A 367 BIT 7,D 02C4 CBC6 443 SET O,(HL) 
022E CB7B 368 BIT 7,E 02C6 CBC7 444 SET O,A 

116 



Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 
07/09/76 10:20:50 OPCODE LISTING 
LOC OBJ CODE STMTSOURCESTATEMENT LOC OBJ CODE STMTSOURCESTATEMENT 

02C8 CBC8 445 SET l,B 036F DO7105 520 LD (IX+IND),C 
02CA CBC9 446 SET l,C 0372 DO7205 521 LD (IX+IND),D 
02cc CBCA 447 SET l,D 0375 DO7305 522 LD (IX+IND),E 
02CE CBCB 448 SET 1,E 03,78 DD7405 523 LD (IX+IND),H 
02D0 CBCC 449 SET 1,H 037B DD7505 524 LD (IX+IND),L 
02D2 CBCD 450 SET 1,L 037E DD7705 525 LD (IX+IND),A 
02D4 CBCE 451 SET 1,(HL) 0381 DD7E05 526 LD A,(IX+IND) 
02D6 CBCF 452 SET l,A 0384 DD8605 527 ADD A,(IX+IND) 
02D8 CBD0 453 SET 2,B 0387 DD8E05 528 ADC A,(IX+IND) 
02DA CBDl 454 SET 2,C 038A DD9605 529 SUB (IX+IND) 
02DC CBD2 455 SET 2,D 038D DD9E05 530 SBC A,(IX+IND) 
02DE CBD3 456 SET 2,E 0390 DDA605 531 AND (IX+IND) 
02E0 CBD4 457 SET 2,H 0393 DDAE05 532 XOR (IX+IND) 
02E2 CBD5 458 SET 2,L 0396 DDB605 533 OR (IX+IND) 
02E4 CBD6 459 SET 2,(HL) 0399 DDBE05 534 CP (IX+IND) 
02E6 CBD7 460 SET 2,A 039C DDEl 535 POP IX 
02E8 CBD8 461 SET 3,B 039E DDE3 536 EX (SP),IX 
02EA CBD9 462 SET 3,C 03A0 DDE5 537 PUSH IX 
02EC CBDA 463 SET 3,D 03A2 DDE9 538 JP (IX) 
02EE CBDB 464 SET 3,E 03A4 DDF9 539 LD SP,IX 
02F0 CBDC 465 SET 3,H 03A6 DDCB0506 540 RLC (IX+IND) 
02F2 CBDD 466 SET 3,L 03AA DDCB050E 541 RRC (IX+IND) 
02F4 CBDE 467 SET 3,(HL) 03AE DDCB0516 542 RL (IX+IND) 
02F6 CBDF 468 SET 3,A 03B2 DDCB051E 543 RR (IX+IND) 
02F8 CBE0 469 SET 4,B 03B6 DDCB0526 544 SLA (IX+IND) 
02FA CBEl 470 SET 4,C 03BA DOCB052E 545 SRA (IX+IND) 
02FC CBE2 471 SET4,D 03BE DDCB053E 546 SRL (IX+IND) 
02FE CBE3 472 SET 4,E 03C2 DDCB0546 547 BIT 0,(IX+IND) 
0300 CBE4 473 SET 4,H 03C6 DDCB054E 548 BIT 1,(IX+IND) 
0302 CBE5 474 SET 4,L 03CA DDCB0556 549 BIT 2,(IX+IND) 
0304 CBE6 475 SET 4,(HL) 03CE DDCB055E 550 BIT 3,(IX+IND) 
0306 CBE7 476 SET 4,A 03D2 DDCB0566 551 BIT 4,(IX+IND) 
0308 CBE8 477 SET 5,B 03D6 DDCB056E 552 BIT 5,(IX+IND) 
030A CBE9 478 SET 5,C 03DA DDCB0576 553 BIT 6,(IX+IND) 
030C CBEA 479 SET 5,D 03DE DDCB057E 554 BIT 7,(IX+IND) 
030E CBEB 480 SET 5,E 03E2 DDCB0586 555 RES 0,(IX+IND) 
0310 CBEC 481 SET 5,H 03E6 DDCB058E 556 RES l,(IX+IND) 
0312 CBED 482 SET 5,L 03EA DDCB0596 557 RES 2,(IX+IND) 
0314 CBEE 483 SET 5,(HL) 03EE DDCB059E 558 RES 3,(IX+IND) 
0316 CBEF 484 SET 5,A 03F2 DDCB05A6 559 RES 4,(IX+IND) 
0318 CBF0 485 SET 6,B 03F6 DDCB05AE 560 RES 5,(IX+IND) 
031A CBFl 486 SET 6,C 03FA DDCB05B6 561 RES 6,(IX+IND) 
031C CBF2 487 SET 6,D 03FE DDCB05BE 562 RES 7,(IX+IND) 
031E CBF3 488 SET 6,E 0402 DDCB05C6 563 SET 0,(IX+IND) 
0320 CBF4 489 SET 6,H (1406 DDCB05CE 564 SET 1,(1 X+IND) 
0322 CBF5 490 SET 6,L 040A DDCB05D6 565 SET 2,(IX+IND) 
0324 CBF6 491 SET 6,(HL) 040E DDCB05DE 566 SET 3,(IX+IND) 
0326 CBF7 492 SET 6,A 0412 DDCB05E6 567 SET 4,(IX+IND) 
0328 CBF8 493 SET 7,B 0416 DDCB05EE 568 SET 5,(IX+IND) 
032A CBF9 494 SET 7,C 041A DDCB05F6 569 SET 6,(IX+IND) 
032C CBFA 495 SET 7,D 041E DDCB0SFE 570 SET 7,(IX+IND) 
032E CBFB 496 SET 7,E 0422 ED40 571 IN B,(C) 
0330 CBFC 497 SET7,H 0424 ED4l 572 OUT (C),B 
0332 CBFD 498 SET 7,L 0426 ED42 573 SBC HL,BC 
0334 CBFE 499 SET 7,(HL) 0428 ED438405 574 LD (NN),BC 
0336 CBFF 500 SET 7,A 042C ED44 575 NEG 
0338 DD09 501 ADDIX,BC 042E ED45 576 RETN 
033A DD19 502 ADDIX,DE 0430 ED46 577 IM 0 
033C DD218405 503 LD IX,NN 0432 ED47 578 LD l,A 
0340 DD228405 504 LD (NN),IX 0434 ED48 579 IN C,(C) 
0344 DD23 505 INC IX 0436 ED49 580 OUT (C),C 
0346 DD29 506 ADD IX,IX 0438 ED4A 581 ADCHL,BC 
0348 DD2A8405 507 LD IX,(NN) 043A ED4B8405 582 LD BC,(NN) 
034C DD2B 508 DECIX 043E ED4D 583 RETI 
034E OD3405 509 INC (IX+IND) 0440 EDSO 584 IN D,(C) 
0351 DD3505 510 DEC (lX+IND) 0442 EDS! 585 OUT (C),D 
0354 !)1)360520 511 LD (IX+IND).N 0444 ED52 586 SBC HL,DE 
0358 DD39 512 ADD lX,SP 0446 ED538405 587 LD (NN),DE 
035A DD4605 513 LD B,(IX+IND) 044A ED56 588 IM I 
035D DD4E05 514 LD C,(IX+IND) 044C ED57 589 LD A,l 
0360 DD5605 515 LD D,(lX+IND) 044E ED58 590 IN E,(C) 
0363 DD5E05 516 LD E,(lX+IND) 0450 ED59 591 OUT (C),E 
0366 DD6605 517 LD H,(IX+IND) 0452 ED5A 592 ADC HL.DE 
0369 DD6E05 518 LD L,(lX+lND) 0454 ED5B8405 593 LD DE,(NN) 
036C DD7005 519 LD (IX+lND),B 0458. ED5E 594 IM 2 

l 17 



Z-80 CROSS ASSEMBUiR VERSION l.06 OP 06/18/76 
07/09/76 J0:20:50 OPCODE LlSTrNG 
LOC OBJ CODE STMT SOURCE STATEMENT LOC OB.JCODE STMTSOURCE STATEMENT 

045A ED60 595 INH,(C) 0520 FDCB053E 670 SRL (IY+IND) 
04SC ED61 596 OUT (C),H 0524 FDCB0546 671 BIT 0,(IY+IND) 
045E ED62 597 SBC HL,HI. 0528 FDCB054E 672 BIT l,(IY+IND) 
0460 ED67 598 RRD 052C FDCB0556 673 BIT 2,(IY+lND) 
0462 ED68 599 IN L,(C) 0530 FDCB055E 674 BIT 3,(IY+IND) 
0464 ED69 600 OUT (C),L 0534 FOCB0566 675 BIT 4,(IY+IND) 
0466 ED6A 601 ADC HL,HL 0538 FIX'B056E 676 BIT 5,(IY+IND) 
0468 ED6F 602 RLD 053(' FDCB0576 677 BIT 6,(IY+lND) 
046A ED72 603 SBC BL.SP 0540 FDCB057E 678 BIT 7,(IY+IND) 
046C ED738405 604 LD (NN),SP 0544 FDCB0586 679 RES 0,(IY+IND) 
0470 ED78 605 IN A,(C) 0548 FDCB058E 680 RES l,(IY+IND) 
0472 ED79 606 OUT (C),A 054C FDCB0596 681 RES 2,(IY+IND) 
0474 ED7A 607 ADC HL,SP 0550 FDCB059E 682 RES 3,(IY+IND) 
0476 ED7B8405 608 LD SP., (NN) 0554 FDCB05A6 683 RES 4,(IY+IND) 
047A EDA0 609 LDI 0558 FDCB05AE 684 RES 5,(IY+IND) 
047C EDAl 610 CPI 055C FDCB05B6 685 RES 6,(IY+IND) 
047E EDA2 611 INI 0560 FDCB05BE 686 RES 7 ,(IY+IND) 
0480 EDA3 612 OlJTf 0564 FDCB05C6 687 SET 0,(IY+IND) 
0482 EDA8 613 LDD 0568 FOCB05CE 688 SET l,(IY+IND) 
0484 EDA9 614 CPD 056C FDCB05D6 689 SET 2,(IY+IND) 
0486 EDAA 615 IND 0570 FDCB05DE 690 SET 3,(IY+IND) 
0488 EDAB 616 OUTD 0574 FDCB05E6 691 SET 4,(IY+IND) 
048A EDll0 617 LDIR 0578 FDCB0SEE 692 SET 5,(IY+IND) 
048C ED.Bl 618 CPIR 057C FDCB05F6 693 SET 6,(IY+IND) 
048E EDB2 619 INIR 0580 FDCB05FE 694 SET 7 ,(IY+IND) 
0490 EDB3 620 OTIR 0584 695 NN DEFS 2 
0492 EDB8 621 LDDR 696 IND EQU 5 
0494 EDB9 622 CPDR 697 M EQU JOH 
0496 EDBA 623 INDR 698 N EQU 20H 
0498 EDBB 624 OTDR 699 DIS EQU 30H 
049A FD09 625 ADDIY,BC 700 END 
049C FD19 626 ADD IY.DE 
049E FD218405 627 LDIY,NN 
04A2 FD228405 628 LD (NN),IY 
04A6 FD23 629 TNCIY 
04A8 FD29 630 ADDIYJY 
04AA FD2A8405 631 LD IY,(NN) 
04AE FD2B 632 DECIY 
04B0 FD3405 633 INC (IY +IND) 
04B3 FD3505 634 DEC (IY+IND) 
04B6 FD360520 635 LD (IY+IND),N 
04BA FD39 636 ADD IY,SP 
04BC FD4605 637 LD B,(IY+IND) 
04BF FD4E05 638 LD C,(IY+IND) 
04C2 FD5605 639 LD D,(IY+IND) 
04C5 FD5E05 640 LD E,(IY+IND) 
04C8 FD6605 641 LD H,(IY+IND) 
04CB FD6E05 642 LD L,(IY+IND) 
04CE FD7005 643 LD (IY+IND),B 
04D1 FD7105 644 LD (IY+IND),C 
04D4 FD7205 645 LD(IY+IND),D 
04D7 FD7305 646 LD (IY+IND),E 
04DA FD7405 647 LD (IY+IND),H 
04DD FD7505 648 LD (IY+IND),L 
04E0 FD7705 649 LD (IY+IND),A 
04E3 FD7E05 650 LD A,(IY+IND) 
04E6 FD8605 651 ADD A,(IY+IND) 
04E9 FD8E05 652 ADC A,(IY+IND) 
04EC FD9605 653 SUB.(IY+IND) 
04EF FD9E05 654 SBC A,(IY+IND) 
04F2 FDA605 655 AND (IY+IND) 
04FS FDAE05 656 XOR (IY+IND) 
04F8 FDB605 657 OR (IY+IND) 
04FB FDBE0S 658 CP (IY+IND) 
04FE FDEl 659 POPIY 
0500 FDE3 660 EX (SP),IY 
0502 FDE5 661 PUSHIY 
0504 FDE9 662 JP (IY) 
0506 FDF9 663 LD SP,IY 
0508 FDCB0S06 664 RLC (IY+IND) 
050C FDCB050E 665 RRC (IY+IND) 
0510 FDCB0516 666 RL (IY+IND) 
0514 FDCB051E 667 RR (IY+IND) 
0518 FOCB0526 668 SLA (IY+IND) 
051C FDCB052E 669 SRA (IY+IND) 

118 



MAIN REG SET ALTERNATE REG SET , 

/ 

ACCUMULATOR FLAGS ACCUMULATOR 
A F A' 

8 C 0· 

0 E 0 

H L H' 

INTERRUPT 

I 
MEMORY 

VECTOR REFRESH 
I R 

INDEX RE.GISHR 1X 

INDEX REGISHR IV 

STACK POINTER SP 

PROGRAM COUNTER PC 

FLAGS 
f 

c· .. 
L 

SPl::CIAL 

PURPOSf 
RfGISTEAS 

" 

'1 
PURPOSE 

REGISTERS J GENERAL 

280-CPU REGISTER CONFIGURATION 

ASCII CHARACTER SET 0-BIT CODE) 
HEXADECIMAL COLUMNS 

~ 
2 3 4 5 

6 5 

HEX C DEC HEX= DEC 
0 0 0 0 

1 1,048,576 1 65,536 

2 2,097,152 2 131,072 

3 3. 145.728 3 196,608 
4 4,194,304 4 262. 144 
5 5,242,880 5 327,680 

6 6,291,456 6 393,216 
7 7,340.032 7 458,752 
8 8,388,608 8 524.288 
9 9,437.184 9 589,824 
A 10485)60 A 655.360 

B 11.534,336 B 720,896 

C 12582.912 C 786.432 

D 13,631488 D 851.968 

E 14,680,064 E 917 .504 

F 15 728.640 F 983.040 

0 1 2 3 4567 
BYTE 

4 3 2 1 

HEX C DEC HEX= DEC HEX=DEC HEX= DEC 
0 0 0 0 
1 4,096 1 256 
2 8,192 2 512 

3 12,288 3 768 
4 16,384 4 1,024 
5 20,480 5 1,280 

6 24,516 6 1,536 
7 28,672 7 1,792 
8 32,768 8 2,048 
9 36,864 9 2,304 
A 40,960 A 2,560 
8 45,056 B 2,816 
C 49.152 C 3,072 
D 53,248 D 3,328 

E 57,344 f 3,584 
F 61 440 F 3,840 

0 1 2 3 4567 
BYTE 

POWERS OF 2 

2n 

256 
512 

1 024 
2 048 
4 096 
8 192 

16 384 
32 768 
65536 

131072 
262 144 
524 288 

1048576 
2 097 152 
4 194 304 
8 388 608 

16 777 216 

0 0 0 0 
1 16 1 1 
2 32 2 2 
3 48 3 3 
4 64 4 4 
5 80 5 5 
6 96 6 6 
7 112 7 7 
8 128 8 8 
9 144 9 9 
A 160 A 10 
B 176 8 11 
C 192 C 12 
D 208 D 13 
E 224 E 14 
F 240 f 15 

0 1 2 3 4567 
BYTE 

n 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 

18 
19 
20 
21 
n 
23 
24 

2" - 160 
z4 "161 

28 " 162 

212 - 163 
21• •" 1s• 
2lD "165 

2 24 , 1GG 

z28 - 16' 

231 " 168 
2JG , 169 

z40" 1510 

2"4 • 1611 
z48 , 1512 

252 " 16 13 

256 ,· 1614 
i'-0 ,. 1615 

l l 9 

0 1 

D 000 001 010 0 1 1 100 101 

0 0000 NUL OLE SP 0 @ p 

1 0001 SOH DCl 1 1 A Q 

2 0010 STX DC2 
,. 

2 B R 
3 0011 ETX DC3 # 3 C s 
4 0100 EQT OC4 s 4 D T 

5 0101 ENG NAK % 5 E u 
6 0110 ACK SYN & 6 F V 
I 0111 BEL ETB 7 G w 
8 1000 BS CAN I 8 H )( 

9 1001 HT EM ) 9 I y 

A 1010 LF SUB . J z 
B 1011 VT ESC + K I 
C 1100 FF FS L 
0 1101 CR GS - M i 
E 1110 so RS • N t 
F 1111 SI VS I ' ,. 

POWERS OF 16 

16" n 

1 0 
16 1 

256 2 
4 096 3 

65 536 4 
1048576 5 

16 777 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

1099511 627 776 10 
17 592 186 044 416 11 

281 474 976 710 656 12 
4 503 599 627 370 496 13 

72 057 594 037 927 936 14 
1 152 921504606846 976 15 

6 7 

11 0 111 

p 

• q 

b ' 
C ' d t 

• u 

f ' 
g w 

h X 

I y 

I l 

k 

I ' 
m 

n 
0 OH 



ALPHABETIC LIST OF INSTRUCTION SET 
Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 

07/09/76 10:22:47 OPCODE LISTING 
LOC OBJ CODE STMTSOURCFSTATEMENT LOC OBJ CODE STMTSOURCESTATEMENT 
0000 SE 1 ADC A, (HL) 0088 CBS0 74 BIT 2,B 
0001 DDSE0S 2 ADC A, (IX+IND) 008A CBSl 75 BIT 2,C 
0004 FDSE0S 3 ADC A, (IY+IND) 008C CBS2 76 BIT 2,D 
0007 SF 4 ADC A,A 008E CBS3 77 BIT 2,E 
0008 88 s ADC A,B 0090 CBS4 78 BIT 2,H 
0009 89 6 ADC A,C 0092 CBSS 79 BIT 2,L 
OO0A SA 7 ADC A,D 0094 CBSE 80 BIT 3, {HL) 
OO0B 8B 8 ADC A,E 0096 DDCB0SSE 81 BIT 3,.(IX+IND) 
oooc SC 9 ADC A,H 009A FDCB0SSE 82 BIT 3, (IY+IND) 
000D SD 10 ADC A,L 009E CBSF 83 BIT 3,A 
0O0E CE20 11 ADC A,N 00A0 CBS8 84 BIT 3,B 
0010 ED4A 12 ADC HL,BC 00A2 CBS9 85 BIT 3,C 
0012 EDSA 13 ADC HL,DE 00A4 CBSA 86 BIT 3,D 
0014 ED6A 14 ADC HL,HL 00A6 CBSB 87 BIT 3,E 
0016 ED7A 15 ADC HL,SP 00A8 CBSC 88 BIT 3,H 
0018 86 16 ADD A, {HL) 00AA CBSD 89 BIT 3, L 
0019 DD860S 17 ADD A, (IX+IND) 00AC CB66 90 BIT 4, {HL) 
00lC FD860S 18 ADD A, (IY+IND) 00AE DDCB0S66 91 BIT 4, (IX+IND) 
OOlF 87 19 ADD A,A 00B2 FDCB0S66 92 BIT 4, (IY+IND) 
0020 80 20 ADD A,B 00B6 CB67 93 BIT 4,A 
0021 81 21 ADD A,C 00B8 CB60 94 BIT 4,B 
0022 82 22 ADD A,D 00BA CB61 95 BIT 4,C 
0023 83 23 ADD A,E 00BC CB62 96 BIT 4,D 
0024 84 24 ADD A,H 00BE CB63 97 BIT 4,E 
0025 85 25 ADD A,L ooco CB64 98 BIT 4,H 
0026 C620 26 ADD A,N 0OC2 CB6S 99 BIT 4,L 
0028 09 27 ADD HL,BC 0OC4 CB6E 100 BIT S, {HL) 
0029 19 28 ADD HL,DE 0OC6 DDCB0S6E 101 BIT S, (IX+IND) 
002A 29 29 ADD HL,HL 0OCA FDCB0S6E 102 BIT S, (IY+IND) 
002B 39 30 ADD HL,SP 0OCE CB6F 103 BIT S,A 
002C DD09 31 ADD IX,BC 00D0 CB68 104 BIT S, B 
002E DD19 32 ADD IX,DE 00D2 CB69 105 BIT s,c 
0030 DD29 33 ADD IX, IX 00D4 CB6A 106 BIT S,D 
0032 DD39 34 ADD IX,SP 00D6 CB6B 107 BIT S,E 
0034 FD09 35 ADD IY,BC 00D8 CB6C 108 BIT S,H 
0036 FD19 36 ADD IY,DE 00DA CB6D 109 BIT S,L 
0038 FD29 37 ADD IY, IY 00DC CB76 110 BIT 6, {HL) 
003A FD39 38 ADD IY, SP 00DE DDCB0S76 111 BIT 6, (IX+IND) 
003C A6 39 AND {HL) 00E2 FDCB0S76 112 BIT 6, (IY+IND) 
003D DDA60S 40 AND (IX+IND) 00E6 CB77 113 BIT 6, A 
0040 FDA60S 41 AND (IY+IND) 00E8 CB70 114 BIT 6,B 
0043 A7 42 AND A 00EA CB71 115 BIT 6,C 
0044 AO 43 AND B 00EC CB72 116 BIT 6,D 
0045 Al 44 AND C 00EE CB73 117 BIT 6,E 
0046 A2 45 AND D 00F0 CB74 118 BIT 6,H 
0047 A3 46 AND E 00F2 CB7S 119 BIT 6,L 
0048 A4 47 AND H 00F4 CB7E 120 BIT 7, (HL) 
0049 AS 48 AND L 00F6 DDCB0S7E 121 BIT 7, (IX+IND) 
004A E620 49 AND N 00FA FDCB0S7E 122 BIT 7, (IY+IND) 
004C CB46 so BIT O, {HL) 00FE CB7F 123 BIT 7,A 
004E DDCB0S46 51 BIT O, {IX+IND) 0100 CB78 124 BIT 7,B 
0052 FDBC0S46 52 BIT O, (IY+IND) 0102 CB79 125 BIT 7,C 
0056 CB47 53 BIT O,A 0104 CB7A 126 BIT 7,D 
0058 CB40 54 BIT O,B 0106 CB7B 127 BIT 7,E 
00SA CB41 55 BIT o,c 0108 CB7C 128 BIT 7,H 
oosc CB42 56 BIT O,D 010A CB7D 129 BIT 7, L 
00SE CB43 57 BIT O,E 0lOC DC840S 130 CALL C,NN 
0060 CB44 58 BIT O,H 0l0F FC840S 131 CALL M,NN 
0062 CB4S 59 BIT O,L 0112 D48405 132 CALL NC,NN 
0064 CB4E 60 BIT 1, {HL) 0115 CD840S 133 CALL NN 
0066 DDCB0S4E 61 BIT 1, (IX+IND) 0118 C4840S 134 CALL NZ,NN 
006A FDCB054E 62 BIT 1, (IY+IND) 011B F4840S 135 CALL P,NN 
006E CB4F 63 BIT 1,A 0llE EC8405 136 CALL PE,NN 
0070 CB48 64 BIT 1, B 0121 £48405 137 CALL PO,NN 
0072 CB49 65 BIT l,C 0124 CC8405 138 CALL Z,NN 
0074 CB4A 66 BIT l,D 0127 3F 139 CCF 
0076 CB4B 67 BIT l,E 0128 BE 140 CP {HL) 
0078 CB4C 68 BIT l,H 0129 DDBE0S 141 CP (IX+IND) 
007A CB4D 69 BIT 1, L 012C FDBE0S 142 CP {IY+IND) 
007C CBS6 70 BIT 2, {HL) 012F BF 143 CP A 
007E DDCB0SS6 71 BIT 2, (IX+IND) 0130 BS 144 CP B 
0082 FDCB0SS6 72 BIT 2, (IY+IND) 0131 B9 145 CP C 
0086 CBS7 73 BIT 2,A 0132 BA 146 CP D 

120 



Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 
07/09/76 10:22:47 OPCODE LISTING 
LOC OBJ CODE STMTSOURCESTATEMENT LOC OBJCODE STMTSOURCESTATEMENT 
0133 BB 147 CP E OlAD F28405 222 JP . P,NN 
0134 BC 148 CP H OlBO EA8405 223 JP PE,NN 
0135 BD 149 CP L 01B3 E28405 224 JP PO,NN 
0136 FE20 150 CP N 01B6 CA8405 225 JP Z,NN 
0138 EDA9 151 CPD 01B9 382E 226 JR C, DIS 
013A EDB9 152 CPDR OlBB 182E 227 JR DIS 
013C EDAl 153 CPI OlBD 302E 228 JR NC, DIS 
013E EDBl 154 CPIR OlBF 202E 229 JR NZ, DIS 
0140 2F 155 CPL OlCl 282E 230 JR Z,DIS 
0141 27 156 DAA OJ,,C3 02 231 LD (BC), A 
0142 35 157 DEC (HL) 01C4 12 232 LD (DE), A 
0143 DD3505 158 DEC (IX+IND) 01C5 77 233 LD (HL), A 
0146 FD3505 159 DEC (IY+IND) OlC6 70 234 LD (HL), B 
0149 3D 160 DEC A 01C7 71 235 LD (HL), C 
014A 05 161 DEC B 01C8 72 236 LD (HL), D 
014B OB 162 DEC BC OlC9 73 237 LD (HL), E 
014C OD 163 DEC C OlCA 74 238 LD (HL), H 
014D 15 164 DEC D OlCB 75 239 LD (HL), L 
014E 1B 165 DEC DE 01cc 3620 240 LD (HL), N 
014F 1D 166 DEC E OlCE DD7705 241 LD (IX+IND), A 
0150 25 167 DEC H OlDl DD7005 242 LD (IX+IND), B 
0151 2B 168 DEC HL 01D4 DD7105 243 LD (IX+IND), C 
0152 DD2B 169 DEC IX 01D7 DD7205 244 LD (IX+IND), D 
0154 FD2B 170 DEC IY OlDA DD7305 245 LD (IX+IND), E 
0156 2D 171 DEC L OlDD DD7405 246 LD (IX+IND), H 
0157 3B 172 DEC SP OlEO DD7505 247 LD (IX+IND), L 
0158 F3 173 DI 01£3 DD360520 248 LD (IX+lND), N 
0159 102£ •~4 DJNZ DIS 01E7 FD7705 249 LD (IY+IND), A 
015B FB us El OlEA FD7005 250 LD (IY+IND), B 
015C E3 176 EX (SP), HL OlED FD7105 251 LD (IY+IND), C 
015D DDE3 177 EX (SP), IX OIFO FD7205 252 LD (IY+IND), D 
015F FDE3 178 EX (SP), IY 01F3 FD7305 253 LD (IY+IND), E 
0161 08 179 EX AF, AF' 01F6 FD7405 254 LD (IY+IND), H 
0162 EB 180 EX DE,HL 01F9 FD7505 255 LD (IY+IND), L 
0163 D9 181 EXX OlFC FD360520 256 LD (IY+IND), N 
0164 76 182 HALT 0200 328405 257 LD (NN), A 
0165 ED46 183 IM 0 0203 ED438405 258 LD (NN), BC 
0167 ED56 184 IM 1 0207 ED538405 259 LD (NN), DE 
0169 EDSE 185 IM 2 020B 228405 260 LD (NN), HL 
016B ED78 186 IN A, (C) 020E DD228405 261 LD (NN), IX 
016D DB20 187 IN A,N 0212 FD228405 262 LD (NN), IY 
016F ED40 188 IN B, (C) 0216 ED738405 263 LD (NN), SP 
0171 ED48 189 IN C, (C) 021A OA 264 LD A, (BC) 
0173 EDSO 190 IN D., (C) 021B lA 265 LD A, (DE) 
0175 ED58 191 IN E, {C) 021C 7E 266 LD A, (HL) 
0177 ED60 192 IN H, (C) 021D DD7E05 267 LD A, (IX+IND) 
0179 ED68 193 IN L, (C) 0220 FD7E05 268 LD A, (IY+IND) 
017B 34 194 INC (HL) 0223 3A8405 269 LD A, (NN) 
017C D03405 195 INC (IX+IND) 0226 7F 270 LD A,A 
017F FD3405 196 INC (IY+IND) 0227 78 271 LD A,B 
0182 3C 197 INC A 0228 79 272 LD A,C 
0183 04 198 INC B 0229 7A 273 LD A,D 
0184 03 199 INC BC 022A 7B 274 LD A,E 
0185 oc 200 INC C 022B 7C 275 LD A,H 
0186 14 201 INC D 022C ED57 276 LD A, I 
0187 13 202 INC DE 022E 7D 277 LD A,L 
0188 lC 203 INC F. 022F 3E20 278 LD A,N 
0189 24 204 INC H 0231 46 279 LD B, (HL) 
018A 23 205 INC HL 0232 DD4605 280 LD B, (lX+lND) 
018B DD23 206 INC IX 0235 FD4605 281 LD B, (IY+IND) 
018D FD23 207 INC lY 0238 47 282 LD B,A 
018F 2C 208 INC L 0239 40 283 LD Il,B 
0190 33 209 INC SP 023A 41 284 Ll) B,C 
0191 EDAA 210 IND 023B 42 285 LD ll,D 
0193 EDBA 211 INDR 023C 43 286 LD B,E 
0195 EDA2 212 lNI 023D 44 287 LD B, ll, NN 
0197 EDB2 213 INIR 023E 45 288 LD B. L 
0199 E9 214 JP (HL) 023F 0620 289 LD H,N 
019A DDE9 215 JP (IX) 0241 ED4B8405 290 LD BC, (NN) 
019C FDE9 216 JP (IY) 0245 018405 291 LD HC,NN 
019E DA8405 217 JP C.NN 0248 4E 292 LD C, (HL) 
OlAl FA8405 218 JP M,NN 0249 DD4E05 293 LD C, (IX+JND) 
01A4 D28405 219 JP NC,NN 024C FD4EOS 294 LD C, (IY+JND) 
01A7 C38405 220 JP NN 0241' 4F 295 LD C,A 
OlAA C28405 221 JP NZ,NN 0250 48 296 LD C, B 

121 



Z-80 CROSS ASSEMBLER VERSION J.06 OF 06/18/76 
07/09/76 10:22:47 OPCODE.LISTING 
WC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT 
0251 49 297 LD c.c 02D8 B2 373 OR D 
0252 4A 298 LD C,D 02D9 B3 374 OR E 
0253 4B 299 LD C,E 02DA B4 375 OR H 
0254 4C 300 LD C,H 02DB BS 376 OR L 
0255 41) 301 LD C,L 02DC F620 377 OR N 
0256 0E20 302 LD C,N 02DE EDBB 378 OTDR 
0258 56 303 LD D, {HL) 02£0 EDB3 379 OTIR 
0259 DD5605 304 LD D, {JX+IND) 02E2 ED79 380 OUT (C),A 
025C FD5605 305 LD D, {JY+IND) 02E4 ED41 381 OUT (C),B 
025F 57 306 LD D,A 02E6 ED49 382 OUT (C),C 
0260 50 307 LD D,B 02E8 ED51 383 OUT (C),D 
0261 51 308 LD D,C 02EA ED59 384 OUT (C),E 
0262 52 309 LD D,D 02EC ED61 385 OUT (C),H 
0263 53 310 LD D,E 02EE ED69 386 OUT (C),L 
0264 54 311 LD D,H 02F0 D320 387 OUT N,A 
0265' 55 312 LD D,L 02F2 EDAB 388 OUTD 
0266 1620 313 LD D,N 02F4 EDA3 389 OUTI 
0268 ED5B8405 314 LD DE, (NN) 02F6 Fl 390 POP AF 
026C 118405 315 LD DE,NN 02F7 Cl 391 POP BC 
026F SE 316 LD E, (HL) 02F8 D1 392 POP DE 
0270 DD5E05 317 LD E, (IX+IND) 02F9 El 393 POP HL 
0273 FD5E05 318 LD E, (IY+IND) 02FA DDEl 394 POP IX 
0276 5F 319 LO E,A 02FC FDEl 395 POP IY 
0277 58 320 LD E,B 02FE F5 396 PUSH AF 
0278 59 321 LD E,C 02FF cs 397 PUSH BC 
0279 5A 322 LD E,D 0300 D5 398 PUSH DE 
027A SB 323 LD E,E 0301 ES 399 PUSH HL 
027B 5C 324 LD E,H 0302 DDE5 400 PUSH IX 
027C SD 325 LD E,L 0304 FDES 401 PUSH IY 
027D 1£20 326 LD E,N 0306 CB86 402 RES 0,(HL) 
027F 66 327 LD H, (HL) 0308 DDCB0586 403 RES 0,(IX+IND) 
0280 DD6605 328 LD H, (IX+IND) 030C FDCB0586 404 RES 0,(IY+IND) 
0283 FD6605 329 LD H, (IY+IND) 0310 CB87 405 RES 0,A 
0286 67 330 LD H,A 0312 CB80 406 RES 0,B 
0287 60 331 LD H,B 0314 CB81 407 RES o,c 
0288 61 332 LD H,C 0316 CB82 408 RES 0,D 
0289 62 333 LD H,D 0318 CB83 409 RES 0,E 
028A 63 334 LD H,E 031A CB84 410 RES 0,H 
028B 64 335 LD H,H 031C CB85 411 RES 0,L 
028C 65 336 LD H,L 031E CB8E 412 RES l,(HL) 
028D 2620 337 LD H,N 0320 DDCB058E 413 RES l,(IX+IND) 
028F 2A8405 338 LD HL, (NN) 0324 FDCB058E 414 RES 1,(IY+IND) 
0292 218405 339 LD HL,NN 0328 CB8F 415 RES 1,A 
0295 ED47 340 LD I, A 032A CB88 416 RES l,B 
0297 DD2A8405 341 LD IX, (NN) 032C CB89 417 RES 1,C 
029B DD218405 342 LD IX,NN 032E CB8A 418 RES l,D 
029F FD2A8405 343 LD IY, (NN) 0330 CB8B 419 RES 1,E 
02A3 FD218405 344 LD IY,NN 0332 CB8C 420 RES l,H 
02A7 6E 345 LD L, (HL) 0334 CB8D 421 RES 1,L 
02A8 DD6E05 346 LD L,(IX+IND) 0336 CB96 422 RES 2,(HL) 
02AB FD6E05 347 LD L,(IY+IND) 0338 DDCB0596 423 RES 2,(IX+IND) 
02AE 6F 348 LD L,A 033C FDCB0596 424 RES 2,(IY+IND) 
02AF 68 349 LD L,B 0340 CB97 425 RES 2,A 
02B0 69 350 LD L,C 0342 CB90 426 RES 2,B 
02B1 6A 351 LD L,D 0344 CB91 427 RES 2,C 
02B2 6B 352 LD L,E 0346 CB92 428 RES 2,D 
02B3 6C 353 LD L,H 0348 CB93 429 RES 2,E 
02B4 6D 354 LD L,L 034A CB94 430 RES 2,H 
02B5 2E20 355 LD L,N 034C CB95 43] RES 2,L 
02B7 ED7B8405 356 LD SP,(NN) 034E CB9E 432 RES 3,(HL) 
02BB F9 357 LD SP,HL 0350 DDCB059E 433 RES 3,(IX+IND) 
02BC DDF9 358 LD SP,IX 0354 FDCB059E 434 RES 3,(IY+IND) 
02BE FDF9 359 LD SP,IY 0358 CB9F 435 RES 3,A 
02C0 318405 360 LD SP,NN 035A CB98 436 RES 3,B 
02C3 EDA8 361 LDD 035C CB99 437 RES 3,C 
02C5 EDB8 362 LDDR 035E CB9A 438 RES 3,D 
02C7 EDA0 363 LDI 0360 CB9B 439 RES 3,E 
02C9 EDB0 364 LDIR 0362 CB9C 440 RES 3,H 
02CB ED44 365 NEG 0364 CB9D 441 RES 3,L 
02CD 00 366 NOP 0366 CBA6 442 RES 4,(HL) 
02CE B6 367 OR (HL) 0368 DDCB05A6 443 RES 4,(IX+IND) 
02CF DOB605 368 OR (IX+IND) 036C FDCB05A6 444 RES 4,(IY+IND) 
02D2 FDB605 369 OR {JY+IND) 0370 CBA7 445 RES 4,A 
02D5 B7 370 OR A 0372 CBA0 446 RES 4,B 
02D6 BO 371 OR B 0374 CBAl 447 RES 4,C 
02D7 Bl 372 OR C 0376 CBA2 448 RES 4,D 

122 



Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 
07/09/76 10:22:47 OPCODE LISTING 
LOC OBJ CODE STMTSOURCESTATEMENT LOC OBJC.ODE STMTSOURCESTATEMENT 
0378 CBA3 449 RES 4,E 041B CBlC 524 RR H 
037A CBA4 450 RES 4,H 041D CBlD 525 RR L 
037C CBA5 451 RES 4,L 041F lF 526 RRA 
037E CBAE 452 RES 5,(HL) 0420 CBOE 527 RRC (HL) 
0380 DDCB05AE 453 RES 5,(IX+IND) 0422 DDCB050E 528 RRC (IX+IND) 
0384 FDCB05AE 454 RES 5,(IY+IND) 0426 FDCB050E 529 RRC (IY+IND) 
0388 CBAF 455 RES 5,A 042A CB0F 530 RRC A 
038A CBAS 456 RES 5,B 042C CB0S 531 RRC B 
038C CBA9 457 RES 5,C 042E CB09 532 RRC C 
038E CBAA 458 RES 5,D 0430 CB0A 533 RRC D 
0390 CBAB 459 RES 5,E 0432 CB0B 534 RRC E 
0392 CBAC 460 RES 5,H 0434 CBOC 535 RRC H 
039'4 CBAD 461 RES 5,L 0436 CB0D 536 RRC L 
0396 CBB6 462 RES 6,(HL) 0438 OF 537 RRCA 
0398 DDCB05B6 463 RES 6,(IX+IND) 0439 ED67 538 RRD 
039C FDCB05B6 464 RES 6,(IY+IND) 043B C7 539 RST 0 
03A0 CBB7 465 RES 6,A 043C D7 540 RST l0H 
03A2 CBB0 466 RES 6,B 043D DF 541 RST 18H 
03A4 CBBl 467 RES 6,C 043E E7 542 RST 20H 
03A6 CBB2 468 RES 6,D 043F EF 543 RST 28H 
03A8 CBB3 469 RES 6,E 0440 F7 544 RST 30H 
03AA CBB4 470 RES 6,H 0441 FF 545 RST 38H 
03AC CBB5 471 RES 6,L 0442 CF 546 RST 8 
03AE CBBE 472 RES 7,(HL) 0443 9E 547 SBC A,(HL) 
03B0 DDCB05BE 473 RES 7,(JX+IND) 0444 DD9E05 548 SBC A,(IX+IND) 
03B4 FDCB05BE 474 RES 7,(IY+IND) 0447 FD9E05 549 SBC A,(IY+IND) 
03B8 CBBF 475 RES 7,A 044A 9F 550 SBC A,A 
03BA CBBS 476 RES 7,B 044B 98 551 SBC A,B 
03BC CBB9 477 RES 7,C 044C 99 552 SBC A,C 
03BE CBBA 478 RES 7,D 044D 9A 553 SBC A,D 
03C0 CBBB 479 RES 7,E 044E 9B 554 SBC A,E 
03C2 CBBC 480 RES 7,H 044F 9C 555 SBC A,H 
03C4 CBBD 481 RES 7,L 0450 9D 556 SBC A,L 
03C6 C9 482 RET 0451 DE20 557 SBC A,N 
03C7 D8 483 RET C 0453 ED42 558 SBC HL,BC 
03C8 F8 484 RET M 0455 ED52 559 SBC HL.DE 
03C9 DO 485 RET NC 0457 ED62 560 SBC HL,HL 
03CA co 486 RET NZ 0459 ED72 561 SBC HL,SP 
03CB F0 487 RET p 045B 37 562 SCF 
03CC ES 488 RET PE 045C CBC6 563 SET 0,(HL) 
03CD E0 489 RET PO 045E DDCB05C6 564 SET 0,(IX+IND) 
03CE cs 490 RET z 0462 FDCB05C6 565 SET 0,(IY+IND) 
03CF ED4D 491 RETI 0466 CBC7 566 SET 0,A 
03D1 ED45 492 RETN 0468 CBC0 567 SET 0,B 
03D3 CB16 493 RL (HL) 046A CBC! 568 SET o,c 
03D5 DDCB0516 494 RL (IX+IND) 046C CBC2 569 SET 0,D 
03D9 FDCB0516 495 RL (IY+IND) 046E CBC3 570 SET 0,E 
03DD CB17 496 RL A 0470 CBC4 571 SET OJI 
03DF CBl0 497 RL B 0472 CBC5 572 SET 0,L 
03El CBll 498 RL C 0474 CBCE 573 SET 1,(HL) 
03E3 CB12 499 RL D 0476 DDCB05CE 574 SET 1,(IX+IND) 
03E5 C813 500 RL E 047A FDCB05CE 575 SET l ,(IY+IND) 
03E7 CB14 501 RL H 047E CBCF 576 SET l,A 
03E9 CB15 502 RL L 0480 CBC8 577 SET l,B 
03EB 17 503 RLA 0482 CBC9 578 SET l,C 
03EC CB06 504 RLC (HL) 0484 CBCA 579 SET 1,D 
03EE DDCB0506 505 RLC (IX+IND) 0486 CBCB 580 SET l,E 
03F2 FDCB0506 506 RLC (IY+IND) 0488 CBCC 581 SET l,H 
03F6 CB07 507 RLC A 048A CBCD 582 SET LL 
03F8 CB00 508 RLC B 048C CBD6 583 SET 2,(Hl.) 
03FA CB0l 509 RLC C 048E DDCB05D6 584 SET 2,(JX+IND) 
03FC CB02 510 RLC D 0492 FIX:B05D6 585 SET 2,(lY+lND) 
03FE CB03 5ll RLC E 0496 CBD7 586 SET 2,A 
0400 CB04 512 RLC u 0498 CBD0 587 SET 2,B 
0402 CB05 513 RLC L 049A CBDl 588 SET 2,C 
0404 07 514 RLCA 049C CBD2 589 SET 2,D 
0405 ED6F 515 RLD 049E CBD3 590 SET 2.E 
0407 CBIE 516 RR (HL) 04A0 CBD4 591 SET 2,H 
0409 DDCB051E 517 RR (lX+IND) 04A2 CBD5 592 SET 2,L 
040D FDCB051E 518 RR (IY+IND) 04A4 CBDS 593 SET 3,B 
0411 CB.IF 519 RR A 04A6 CllDE 594 SET 3,(HL) 
0413 CB18 520 RR B 04A8 DDCBOSDE 595 SET 3,(IX+IND) 
0415 CB19 521 RR C 04AC FDCB051W 596 SE'I 3,(lY+rND) 
0417 CBJA 522 RR D 0480 CBDF 597 SET 3,A 
0419 CBlB 523 RR E 04B2 CBD9 598 SET 3,C 

123 



Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 
07/09/76 10:22:47 OPCODE LISTING 
LOC OBJ CODE STMTSOURCESTATEMENT LOC OBJ CODE STMTSOURCESTATEMENT 
04B4 CBDA 599 S.ET 3,D 0568 FD9605 675 SUB (IY+IND) 
04B6 CBDB 600 SET 3,E 056B 97 676 SUB A 
04B8 CBDC 601 SET 3,H 056C 90 677 SUB B 
04BA CBDD 602 SET 3,L 056D 91 678 SUB C 
04BC CBE6 603 SET 4,(HL) 056E 92 679 SUB D 
04BE DDCB05E6 604 SET 4,(IX+IND) 056F 93 680 SUB E 
04C2 FDCB05E6 605 SET 4,(IY+IND) 0570 94 681 SUB H 
04C6 CBE7 606 SET 4,A 0571 95 682 SUB L 
04C8 CBEO 607 SET 4,B 0572 D620 683 SUB N 
04CA CBEl 608 SET 4,C 0574 AE 684 XOR (HL) 
04CC CBE2 609 SET 4,D 0575 DDAE05 685 XOR (IX+IND) 
04CE CBE3 610 SET 4,E 0578 FDAE05 686 XOR (IY+IND) 
04D0 CBE4 611 SET 4,H 057B AF 687 XOR A 
04D2 CBE5 612 SET 4,L 057C AS 688 XOR B 
04D4 CBEE 613 SET 5,(HL) 057D A9 689 XOR C 
04D6 DDCB05EE 614 SET 5,(IX+IND) 057E AA 690 XOR D 
04DA FDCB05EE 615 SET 5,(IY+IND) 057F AB 691 XOR E 
04DE CBEF 616 SET 5,A 0580 AC 692 XOR H 
04E0 CBE8 617 SET 5,B 0581 AD 693 XOR L 
04E2 CBE9 618 SET 5,C 0582 EE20 694 XOR N 
04E4 CBEA 619 SET 5,D 0584 695 NN DEFS 2 
04E6 CBEB 620 SET 5,E 696 IND EQU 5 
04E8 CBEC 621 SET 5,H 697M EQU l0H 
04EA CBED 622 SET 5,L 698N EQU 20H 
04EC CBF6 623 SET 6,(HL) 699 DIS EQU 30H 
04EE DDCB05F6 624 SET 6,(IX+IND) 700 END 
04F2 FDCB05F6 625 SET 6,(IY+IND) 
04F6 CBF7 626 SET 6,A 
04F8 CBFO 627 SET 6,B 
04FA CBFl 628 SET 6,C 
04FC CBF2 629 SET 6,D 
04FE CBF3 630 SET 6,E 
0500 CBF4 631 SET 6,H 
0502 CBF5 632 SET 6,L 
0504 CBFE 633 SET 7,(HL) 
0506 DDCB05FE 634 SET 7,(IX+IND) 
050A FDCB05FE 635 SET ', ,(IY+IND) 
050E CBFF 636 SET 7,A 
0510 CBF8 637 SET 7,B 
0512 CBF9 638 SET 7,C 
0514 CBFA 639 SET 7,D 
0516 CBFB 640 SET 7,E 
0518 CBFC 641 SET 7,H 
051A CBFD 642 SET 7,L 
051C CB26 643 SLA (HL) 
051E DDCB0526 644 SLA (IX+IND) 
0522 FDCB0526 645 SLA (IY+IND) 
0526 CB27 646 SLA A 
0528 CB20 647 SLA B 
052A CB21 648 SLA C 
052C CB22 649 SLA D 
052E CB23 650 SLA E 
0530 CB24 651 SLA H 
0532 CB25 652 SLA L 
0534 CB2E 653 SRA (HL) 
0536 DDCB052E 654 SRA (IX+IND) 
053A FDCB052E 655 SRA (IY+IND) 
053E CB2F 656 SRA A 
0540 CB28 657 SRA B 
0542 CB29 658 SRA C 
0544 CB2A 659 SRA D 
0546 CB2B 660 SRA E 
0548 CB2C 661 SRA H 
054A CB2D 662 SRA L 
054C CB3E 663 SRL (HL) 
054E DDCB053E 664 SRL (IX+IND) 
0552 FDCB053E 665 SRL (IY+IND) 
0556 CB3F 666 SRL A 
0558 CB38 667 SRL B 
055A CB39 668 SRL C 
055C CB3A 669 SRL D 
055E CB3B 670 SRL E 
0560 CB3C 671 SRL H 
0562 CB3D 672 SRL L 
0564 96 673 SUB (HL) 
0565 DD9605 674 SUB (IX+IND) 

124 



Error Messages 

The TRS-80 Assembler/Editor recognizes two types of 
errors: 

1) Command errors - The error message is printed and 
control is transferred to command level. 

2) Assembler errors - These three types of errors may 
occur while executing an Assemble command. 
a) Terminal - Assembly is terminated and control 

is returned to command level. 
b) Fatal - The line containing the error is not further 

processed and no object code is generated for that 
line. Assembly proceeds with next source line. 

c) Warning - The error message is printed and 
assembly of the line containing the warning con­
tinues. The resulting object code may not be what 
the programmer intended. 

Following is a list of all errors and an explanation of each. 

COMMAND ERRORS 

1) BAD P ARAMETER(S) 

Causes -

Increment specified as zero. 
11(/)(f),(f) 

Parameter(s) not properly separated or terminated. 
P l(f)(f)(f),2(/)(f)(f) (comma should be colon) 
Pl(f):20L (garbage at end of command) 

Specified line number or increment is greater than 65529. 
E660QQ 

Line specification is not a number or one of the special 
characters #, ., or *. 

P@:20'/J 

Second line number of range is less than first line number 
of range. 

P 200:10(/) 

Specified cassette filename: 
i) is longer than 6 characters 
ii) does not begin with an alphabetic character 
iii) contains characters which- are not alphanumeric 

W 1 TEST 
L TESTFILE 

An unsupported assembly switch was specified or the slashes 
were misplaced or omitted. 

A/NO/NL 
ANO 
AZZ 

An attempt was made to load a cassette which was not 
written by the Editor or for some other reason cannot he 
properly read. 

125 

BUFFER FULL 

There is no room in the edit buffer for adding text. 

ILLEGAL COMMAND 

The first character of the command line does not specify a 
valid Editor/ Assembler command. 

!_Z I (f)(/)0: 12(/)0 

LINE NUMBER TOO LARGE 

Causes 

Renumbering (using the N command with the specified 
starting line number and increment would cause line(s) to 
be assigned numbers greater than 65529. The renumbering 
is not performed. 

N6(/K/)(f)(f), I 000 (if there are more than 6 lines of text 
in the edit buffer) 

The next line number to be generated by [nsert or Replace 
would exceed 65529. 

!_] 64(/)(/)(/),1600 
64000 HELLO 
~NUMBER TOO LARGE 
* (next number would be 656(/)0) 

NO ROOM BETWEEN LINES 

The next line number to be generated by Insert or Replace 
would be greater than or equal to the line number of the 
next line of text in the edit buffer. The increment must be 
decreased or the Jines in the buffer renumbered. 

!_Pl00:Jl5 
00100 HE'( 
00114 YOU 
.!J 112,2 
~12TEST 
NO ROOM BEJWEEN LINES 

* 

NO SUCH LINE 

(next number would be 1 14 
which already exists) 

A line specified by a command does not exist. 

*Pl</Jf/J:115 
~~tUhY. 
(/)@JL4YQ_l[ 
.!.El 12 
NO.SUCH LINE_ (there is no line l J 2) 



NO TEXT IN BUFFER 

A command requiring text in the buffer was issued when the 
edit buffer was empty. 
Tiie commands Load, [nsert, Basic, and System can be 
executed when the buffer is empty. All other commands 
require at least one line of text to be in the buffer. 

*.D#:* 
~:P 
NOT.EXT IN BUFFER 

STRING NOT FOUND 

( empty the buffer) 

The string being searched for by the Find command could 
not be found between the current line and the end of the 
buffer. 

TERMINAL ERRORS 

l) SYMBOL TABLE OVERFLOW 

There is not enough memory for the assembler's symbol 
table. 

FAT AL ERRORS 

BAD LABEL 
The character string found in the label field of the source 
statement 
a) begins with a non alphabetic character 
b) is no longer than 6 characters 
c) contains characters which are not alphanumeric 

EXPRESSION ERROR 
The operand field contains an ill-formed expression. 

ILLEGAL ADDRESSING MODE 
The operand field does not specify an addressing mode which 
is illegal with the specified opcode. 

ILLEGAL OPCODE 

The character string found in the opcode field of the source 
statement is not a recognized instruction mnemonic or 

. assembler pseudo-op. 

MISSING JNFORMA TION 

Information vital to the correct assembly of the source line 
was not provided. The opcode is missing or the operands are 
not completely specified. 

WARNINGS 

BRANCH OUT OF RANGE 

The destination (D) of a relative jump instruction (JR, 
DJNZ) is not within the range (LC-128 _(_D _(_(LC 127) 
where LC is the address assigned to the first byte of the jump 
instruction. The instruction is assembled as a branch to 
itself by forcing the offset to hex FE. 

126 

FIELD OVERFLOW 

A number or expression result specified in the operand field 
is too large for the specified instruction operand. The result 
is truncated to the largest allowable number of bits. For 
example, BIT 9, A would cause such an error. 

MULTIPLY DEFINED SYMBOL 

The operand field contains a reference to the symbol which 
has been multiply defined. The first definition of the symbol 
is used to assemble the line. 

MULTIPLE DEFINITION 

The source line is attempting to illegally redefine a symbol. 
The original definition of the symbol is retained. Symbols 
may only be redefined by the DEFL pseudo-op and only if 
they were originally defined by DEFL. 

NO END STATEMENT 

The program end statement is missing. 

UNDEFINED SYMBOL 

The operand fie.Id contains a reference to a symbol which 
has not been defined. A value of zero is used for the 
undefined symbol. 



LEVEL I BASIC Addresses 

CURSOR 
LOCATION 

KEYBOARD SCAN 

DISPLAY BYTE 
AT CURSOR 

TURN ON 
CASSETTE 

SAVE MEMORY 
TO CASSETTE 

LOAD MEMORY 
FROM CASSETTE 

RETURN TO 
LEVEL I BASIC 

RETURN TO TBUG 
(UNDER LEVEL I 

BASIC) 

LEVEL II BASIC Addresses 

CURSOR 
LOCATION 

4068H 
Contains a 3C00H to 3FFFH which is the current cursor position on screen. 

WAIT CALL 

JR 

0B40H 

Z,WAIT 

;SCAN 

;Z=l IF KB CLEAR 

(A-register contains input byte, Input byte is displayed at current cursor). 

PUSH DE 
PUSH IY 

LD A,20H 

RST lOH 

POP IY 

POP DE 

CALL 0FE9H 
(On board cassette is turned on via remote plug) 

CALL 
LD 
w 
CALL 

0FE9H 
HL,7000H 
DE,7100H 
0F4BH 

(Cassette is turned off) 

CALL 0EF4H 
(On return HL = last + 1 address 

Z == 0 if checksum error 
Z = 1 if checksum OK) 

(Cassette is turned off) 

Press 
JP 
JP 

RESET 
0 
01C9H 

(Re-entry gives a READY ) 

Set a Breakpoint to next 
opcode address. 

JP 40B1H 

4020H 

;MUST SAVE 
DE&IY 

;BYTE TO DISPLAY 

;DISPLAY BYTE 

, ;RESTORE 

DE&IY 

;l'URN ON CASSETTE 
;START ADDRESS 
;LAST+ I ADDRESS 
;SAVE IT 

;TURN ON & READ 

;POWER UP 
;RE-ENTRY 

;RE-ENTER TBUG 

(Contains 3C00H to 3FFF which is the cumml cursor position on :::creen) 

127 



TURN ON CURSOR 
CHARACTER 

KEYBOARD SCAN 

DISPLAY BYTE 
AT CURSOR 

DEFINE DRIVE 

WRITE LEADER 
AND SYNC BYTE 

TURNOFF 
CASSETTE 

SAVE MEMORY 
TO CASSETTE 

LOOK FOR LEADER 
AND SYNC BYTE 

LOAD MEMORY 
FROM CASSETTE 

AGN 

PUSH 
PUSH 
LD 
CALL 
POP 
POP 

PUSH 
PUSH 
CALL 
OR 
JR 
POP 
POP 

DE 
IY 
A,0EH 
33H 
IY 
DE 

DE 
IY 
2BH 
A 
Z,AGN 
IY 
DE 

;MUST SAVE 
; DE&IY 
;0EH IS CURSOR BYTE 
;DISPLAY ROUTINE 
;RESTORE 

DE&IY 

;MUST SAVE 
; DE&IY 
;SCAN ROUTINE 
;A=O IF KB CLEAR 
;BRANCH IF NO BYTE 
;RESTORE 
; DE&IY 

(A register contains byte when loop falls through.) 
(Byte is NOT displayed on screen!) 

PUSH 
PUSH 
LD 
CALL 
POP 
POP 

DE 
IY 
A,20H 
33H 
IY 
DE 

;A-REGISTER SPECIFIES CASSETTE 
LD A,0 
CALL 0212H 

CALL 0287H 

CALL 01F8H 

;MUST SAVE 
; DE&IY 
;BYTE TO DISPLAY 
;DISPLAY 
;RESTORE 

DE&IY 

;ON BOARD CASSETTE 
;DEF!NE DRIVE 

LD A,0 ;ON BOARD CASSETTE 
CALL 0212H ;DEFINE DRIVE 
CALL 0287H ;WRITE LEADER 
LD A,20H ;BYTE TO RECORD 
CALL 0264H ;OUTPUT BYTE 

(USER must CALL 264H often enough to keep up with 500 baud. Timing is 
automatic.) 

CALL 01F8H ;CASSETTE OFF 

CALL 0296H 

LD A,0 
CALL 0212H ;DEFINE DRIVE 
CALL 0296H ;FIND SYNC BYTE 
CALL 0235H ;READ ONE BYTE 

(User must CALL 0235H often enough to keep up with 500 baud. User must do 
own checksum if desired. A-register contains byte read.) The user must tum off 
the Cassette (CALL 01F8H) when all bytes have-been read. 

128 



RETURN TO 
LEVEL II BASIC 

RETURN TO TBUG 
(UNDER LEVEL II BASIC) 

Press 
JP 
JP 

RESET 
0 
1Al9H 

;LIKE POWER UP 
;RE-ENTRY 

(RE-ENTRY gives a READY)) 

Set a Breakpoint to next opcode address. 

JP 43A0H ;RE-ENTER TBUG 

129 





II 
LEVEL II BASIC MEMORY MAP 

ADDRESS 

DECIMAL HEXIDECIMAL 

0 0000 

,:0::: LEVEL II BASIC ROM 

12288 3000 

RESERVED 

14302 37DE COMMUNICATION STATUS ADDRESS 
14303 37DF COMMUNICATION DATA ADDRESS 
14304 37E0 INTERRUPT LATCH ADDRESS 
14305 37El DISK DRIVE SELECT LATCH ADDRESS 
14308 37E4 CASSETTE SELECT LATCH ADDRESS 
14312 37E8 LINE PRINTER ADDRESS 
14316 37EC FLOPPY DISK CONTROLLER ADDRESS 

14336 3800 
TRS-80 KEYBOARD 

MEMORY 
15360 3000 

TRS-80 CRT 

VIDEO MEMORY 
16383 3FFF 
16384 4000 I LEVEL II BASIC FIXED RAM l 

[ VECTORS (RST'S l THROUGH 7) 
16402 4012 
16405 4015 KEYBOARD DEVICE CONTROL BLOCK 

-
DCB+ 0 = DCB TYPE 

+ l == DRIVER ADDRESS 
+ 2 = DRIVER ADDRESS 
+ 3=(/J 
+ 4 =f/J 
+ 5 = f/J 
+ 6::: 'K' 

.__ + 7 = 'I' 
16413 401D VIDEO DlSPLA Y CONTROL BLOCK -

DCB+ 0 = DCB TYPE 
+ 1 '" DIUVER ADDRESS (LSB) 
+ 2 = DRIVER ADDRESS (MSB) 
+ 3 = CURSOR POS N (LSB) 
+ 4 = CURSOR POS N (MSB) 
+ 5 = CURSOR CHARACTER 
+ 6='D' 

16421 4025 
~ 

+ 7 = '0' 
LINE PRINTER CONTROL BLOCK - DCB+ 0 = IX'BTYPE 

+ 1 = DRIVER ADDRESS (LSB) 
+ 2 = DRIVER ADDRESS (MSB) 
+ 3 = LINES/PAGE 
+ 4 = LINE COUNTER 
+ 5 = f/J 
+ 6::;; 'P' 

'- + 7 = 'R' 

130 



16429 

16463 
16464 
16466 
16468 
16476 
16478 
16512 

16870 

17127 
17128 

17129 

20479 (4K) 
32767 (16K) 

4080 

402D 

404F 
4050 
4052 
4054 
405C 
405E 

41E6 

42E7 
42E8 

42E9 

4FFF (4K) 
7FFF (16K) 

___ .._ 

RESERVED 

FDC INTERRUPT VECTOR 
COMMUNICATIONS INTERRUPT VECTOR 

RESERVED 

[ 
25 MSEC HEARTBEAT INTERRUPT 
RESERVED 

LEVEL 11 BASIC FREE RAM 

[ RESERVED 

I/0 BUFFER 

ALWAYS ZERO 

[ t PROGRAM TEXT 

[ + SIMPLE VARIABLES 

[+ ARRAYS 

[+ STRING VARIABLE NAMES AND OVERHEAD 

[ FREE MEMORY 

[t STACK 

[ t STRING SPACE 

[ SPACE RESERVED.FOR MACHINE LANGUAGE 
ROUTINES MIXED WITH BASIC - IF MEMORY 
SIZE SET 

-------------~----------------------------
END OF ACTUAL MEMORY 

131 



E<litor/Assembler ~ommand List 

Assemble _!A [!~filename) [/sw!tch[/switch) ... I] 

Basic 

Delete 

EDIT 

Find 

Insert 

Hzmlcopy 

Load 

Number 

l'nnt 

J-; 1•place 

Type 

Write 

_!B 

.!D [line I [ :line2 l] 

! E fline J 

*_Ff string) 

!I li0e[.mcj 

*H [linel[:line2l] 

.!L [~fiiename] 

.!N [line f ,inc I ] 

_! P (line l I :line2 l ] 

..'.'.:. R [ line I ,incl l 

!.T[linel I :line21] 

_! W [~filename} 

132 







All Radio Shack computer programs are distributed on an "AS IS" basis without warranty. 

Radio Shack shall have no liability or responsibility to customer or any other person or entity with 
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by com­
puter equipment or programs sold by Radio Shack, including but not limited to any interruption of 
service, loss of business or anticipatory profits or consequential damages resulting from the use or 
operation of such computer or computer programs. 

NOTE: Good data processing procedure dictates that the user test the program, run and test sample 
sets of data, and run the system in parallel with the system previously in use for a periqd of 
time adequate to insure that results of operation of the computer or program are satisfactory. 

Refer to User's Manual for warranties. Failure to adhere to procedures set forth in User's Manual may 
resu It in the loss of warranties. 

RADIO SHACI< MA DIVISION OF TANDY CORPORATION 

U.S.A.: FORT WORTH, TEXAS 76102 
CANADA: BARRIE, ONTARIO L4M 4W5 

AUSTRALIA 

280 316 VICTORIA ROAD 
RYOALMERE NS W 2116 

578-PERKCO-298-0072 REV B 

TANDY CORPORATION 
BELGIUM 

PARC INDUSTRIEL DE NANINNE 
5140 NANINNE 

U K 

BILSTON ROAD WEDNESBURY 
WEST MIDLANDS WSlO 7JN 

PRINTED IN U.S.A. 


	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf



